当前位置: 首页 > ai >正文

WidowX-250s 机械臂的简单数字孪生案例

前面一段时间记录了一下WidowX-250s机械臂的学习与遥操作演示,相关链接如下:

WidowX-250s 机械臂学习记录:

https://blog.csdn.net/qq_54900679/article/details/145556979

WidowX-250s 机械臂遥操作演示记录:

https://blog.csdn.net/qq_54900679/article/details/145578127


接下来进行WidowX-250s 机械臂的数字孪生操作演示,也可以理解为用真机去遥控仿真中的机械臂运动,即Real2Sim!

系统:Ubuntu20.04,ROS1;硬件:1台笔记本、1台机械臂


1.机械臂的launch启动文件配置以及话题读取

因为原先完成了aloha相关项目的配置,所以对于这次的WidowX-250s机械臂的序列号配置,依然保留原先的命名风格。

主动端的机械臂序列号名称定义为:/dev/ttyDXL_master_left

首先需要启动机械臂的launch运行文件,single_real2sim.launch文件内容如下:

<launch><arg name="robot_model_master"                default="wx250s"/><arg name="base_link_master"                  default="base_link"/><arg name="master_node"                       default="$(find aloha)/config_single/master_modes_left.yaml"/><arg name="launch_driver"                     default="true"/><arg name="use_sim"                           default="false"/><arg name="robot"                             value="master_left"/><include if="$(arg launch_driver)" file="$(find interbotix_xsarm_control)/launch/xsarm_control.launch"><arg name="robot_model"                       value="$(arg robot_model_master)"/><arg name="robot_name"                        value="$(arg robot)"/><arg name="base_link_frame"                   value="$(arg base_link_master)"/><arg name="use_world_frame"                   value="false"/><arg name="use_rviz"                          value="false"/><arg name="mode_configs"                      value="$(arg master_node)"/><arg name="use_sim"                           value="$(arg use_sim)"/></include><nodename="master_left_transform_broadcaster"pkg="tf2_ros"type="static_transform_publisher"args="0 -0.25 0 0 0 0 /world /$(arg robot)/base_link"/></launch>

launch文件的运行指令:

roslaunch single_real2sim.launch 

继续重新开启一个终端,运行查看关节话题:

rostopic list

终端会显示:

我们来查看一下/master_left/joint_states:

rostopic echo /master_left/joint_states

终端会显示如下关节信息的动态变化:

我们需要获取的是其中的position数据列表,将其实时的发送给仿真环境中。


2.Mujoco仿真环境的关节数据读取

下面继续基于Mujoco仿真环境来进行机械臂的关节信息读取,以mink项目的调试为例:

可以看到左臂的6个关节的qpos数据可以获取到(调试中不包含夹爪的qpos,只是用来演示一下),我们要做的就是将这个qpos数据实时替换为真实机械臂的position数据,这样就可以实现真实与仿真的连通了。


3.利用真机遥操作Mujoco仿真中的ARM

好了,下面开始Real2Sim,好戏开始:

定义一个机械臂的回调函数python脚本(arm_aloha_real_recorder.py):
注意:下面只用来测试单臂的遥操作

import numpy as np
import time
# from constants import DT
from interbotix_xs_msgs.msg import JointSingleCommandimport IPython
e = IPython.embed### ALOHA fixed constants
DT = 0.02
FPS = 50class ArmRecorder:def __init__(self, init_node=True, is_debug=False):from collections import dequeimport rospyfrom sensor_msgs.msg import JointStatefrom interbotix_xs_msgs.msg import JointGroupCommand, JointSingleCommandself.secs = Noneself.nsecs = Noneself.qpos = Noneself.effort = Noneself.arm_command = Noneself.gripper_command = Noneself.is_debug = is_debugif init_node:rospy.init_node('recorder', anonymous=True)rospy.Subscriber(f"/master_left/joint_states", JointState, self.puppet_state_cb)rospy.Subscriber(f"/master_left/commands/joint_group", JointGroupCommand, self.puppet_arm_commands_cb)rospy.Subscriber(f"/master_left/commands/joint_single", JointSingleCommand, self.puppet_gripper_commands_cb)if self.is_debug:self.joint_timestamps = deque(maxlen=50)self.arm_command_timestamps = deque(maxlen=50)self.gripper_command_timestamps = deque(maxlen=50)time.sleep(0.1)def puppet_state_cb(self, data):self.qpos = data.positionself.qvel = data.velocityself.effort = data.effortself.data = dataif self.is_debug:self.joint_timestamps.append(time.time())def puppet_arm_commands_cb(self, data):self.arm_command = data.cmdif self.is_debug:self.arm_command_timestamps.append(time.time())def puppet_gripper_commands_cb(self, data):self.gripper_command = data.cmdif self.is_debug:self.gripper_command_timestamps.append(time.time())def print_diagnostics(self):def dt_helper(l):l = np.array(l)diff = l[1:] - l[:-1]return np.mean(diff)joint_freq = 1 / dt_helper(self.joint_timestamps)arm_command_freq = 1 / dt_helper(self.arm_command_timestamps)gripper_command_freq = 1 / dt_helper(self.gripper_command_timestamps)print(f'{joint_freq=:.2f}\n{arm_command_freq=:.2f}\n{gripper_command_freq=:.2f}\n')def get_arm_joint_positions(bot):return bot.arm.core.joint_states.position[:6]def get_arm_gripper_positions(bot):joint_position = bot.gripper.core.joint_states.position[6]return joint_positiondef move_arms(bot_list, target_pose_list, move_time=1):num_steps = int(move_time / DT)curr_pose_list = [get_arm_joint_positions(bot) for bot in bot_list]traj_list = [np.linspace(curr_pose, target_pose, num_steps) for curr_pose, target_pose in zip(curr_pose_list, target_pose_list)]for t in range(num_steps):for bot_id, bot in enumerate(bot_list):bot.arm.set_joint_positions(traj_list[bot_id][t], blocking=False)time.sleep(DT)def move_grippers(bot_list, target_pose_list, move_time):gripper_command = JointSingleCommand(name="gripper")num_steps = int(move_time / DT)curr_pose_list = [get_arm_gripper_positions(bot) for bot in bot_list]traj_list = [np.linspace(curr_pose, target_pose, num_steps) for curr_pose, target_pose in zip(curr_pose_list, target_pose_list)]for t in range(num_steps):for bot_id, bot in enumerate(bot_list):gripper_command.cmd = traj_list[bot_id][t]bot.gripper.core.pub_single.publish(gripper_command)time.sleep(DT)def setup_puppet_bot(bot):bot.dxl.robot_reboot_motors("single", "gripper", True)bot.dxl.robot_set_operating_modes("group", "arm", "position")bot.dxl.robot_set_operating_modes("single", "gripper", "current_based_position")torque_on(bot)def setup_master_bot(bot):bot.dxl.robot_set_operating_modes("group", "arm", "pwm")bot.dxl.robot_set_operating_modes("single", "gripper", "current_based_position")torque_off(bot)def set_standard_pid_gains(bot):bot.dxl.robot_set_motor_registers("group", "arm", 'Position_P_Gain', 800)bot.dxl.robot_set_motor_registers("group", "arm", 'Position_I_Gain', 0)def set_low_pid_gains(bot):bot.dxl.robot_set_motor_registers("group", "arm", 'Position_P_Gain', 100)bot.dxl.robot_set_motor_registers("group", "arm", 'Position_I_Gain', 0)def torque_off(bot):bot.dxl.robot_torque_enable("group", "arm", False)bot.dxl.robot_torque_enable("single", "gripper", False)def torque_on(bot):bot.dxl.robot_torque_enable("group", "arm", True)bot.dxl.robot_torque_enable("single", "gripper", True)def calibrate_linear_vel(base_action, c=None):if c is None:c = 0.v = base_action[..., 0]w = base_action[..., 1]base_action = base_action.copy()base_action[..., 0] = v - c * wreturn base_actiondef smooth_base_action(base_action):return np.stack([np.convolve(base_action[:, i], np.ones(5)/5, mode='same') for i in range(base_action.shape[1])], axis=-1).astype(np.float32)def postprocess_base_action(base_action):linear_vel, angular_vel = base_actionangular_vel *= 0.9return np.array([linear_vel, angular_vel])if __name__ == '__main__':record = ArmRecorder()while True:# joint_position = get_arm_joint_positions()joint_position = record.qposprint(f"\nJoint Position:")# print(f"  position: {joint_position:.6f}")print(joint_position)# time.sleep(0.5)

数字孪生的real2sim相关的python脚本如下(arm_aloha_real2sim.py):

from pathlib import Path
from typing import Optional, Sequenceimport mujoco
import mujoco.viewer
import numpy as np
from loop_rate_limiters import RateLimiterimport mink
from mink.contrib import TeleopMocapfrom interbotix_xs_modules.arm import InterbotixManipulatorXS
from interbotix_xs_msgs.msg import JointSingleCommandfrom arm_aloha_real_recorder import ArmRecorder_HERE = Path(__file__).parent
_XML = _HERE / "aloha" / "scene.xml"# Single arm joint names.
_JOINT_NAMES = ["waist","shoulder","elbow","forearm_roll","wrist_angle","wrist_rotate",
]# Single arm velocity limits, taken from:
# https://github.com/Interbotix/interbotix_ros_manipulators/blob/main/interbotix_ros_xsarms/interbotix_xsarm_descriptions/urdf/vx300s.urdf.xacro
_VELOCITY_LIMITS = {k: np.pi for k in _JOINT_NAMES}def compensate_gravity(model: mujoco.MjModel,data: mujoco.MjData,subtree_ids: Sequence[int],qfrc_applied: Optional[np.ndarray] = None,
) -> None:"""Compute forces to counteract gravity for the given subtrees.Args:model: Mujoco model.data: Mujoco data.subtree_ids: List of subtree ids. A subtree is defined as the kinematic treestarting at the body and including all its descendants. Gravitycompensation forces will be applied to all bodies in the subtree.qfrc_applied: Optional array to store the computed forces. If not provided,the applied forces in `data` are used."""qfrc_applied = data.qfrc_applied if qfrc_applied is None else qfrc_appliedqfrc_applied[:] = 0.0  # Don't accumulate from previous calls.jac = np.empty((3, model.nv))for subtree_id in subtree_ids:total_mass = model.body_subtreemass[subtree_id]mujoco.mj_jacSubtreeCom(model, data, jac, subtree_id)qfrc_applied[:] -= model.opt.gravity * total_mass @ jacif __name__ == "__main__":model = mujoco.MjModel.from_xml_path(str(_XML))data = mujoco.MjData(model)# Bodies for which to apply gravity compensation.left_subtree_id = model.body("left/base_link").idright_subtree_id = model.body("right/base_link").id# Get the dof and actuator ids for the joints we wish to control.joint_names: list[str] = []velocity_limits: dict[str, float] = {}for prefix in ["left", "right"]:for n in _JOINT_NAMES:name = f"{prefix}/{n}"joint_names.append(name)velocity_limits[name] = _VELOCITY_LIMITS[n]dof_ids = np.array([model.joint(name).id for name in joint_names])actuator_ids = np.array([model.actuator(name).id for name in joint_names])configuration = mink.Configuration(model)tasks = [l_ee_task := mink.FrameTask(frame_name="left/gripper",frame_type="site",position_cost=1.0,orientation_cost=1.0,lm_damping=1.0,),r_ee_task := mink.FrameTask(frame_name="right/gripper",frame_type="site",position_cost=1.0,orientation_cost=1.0,lm_damping=1.0,),posture_task := mink.PostureTask(model, cost=1e-4),]# Enable collision avoidance between the following geoms.l_wrist_geoms = mink.get_subtree_geom_ids(model, model.body("left/wrist_link").id)r_wrist_geoms = mink.get_subtree_geom_ids(model, model.body("right/wrist_link").id)l_geoms = mink.get_subtree_geom_ids(model, model.body("left/upper_arm_link").id)r_geoms = mink.get_subtree_geom_ids(model, model.body("right/upper_arm_link").id)frame_geoms = mink.get_body_geom_ids(model, model.body("metal_frame").id)collision_pairs = [(l_wrist_geoms, r_wrist_geoms),(l_geoms + r_geoms, frame_geoms + ["table"]),]collision_avoidance_limit = mink.CollisionAvoidanceLimit(model=model,geom_pairs=collision_pairs,  # type: ignoreminimum_distance_from_collisions=0.05,collision_detection_distance=0.1,)limits = [mink.ConfigurationLimit(model=model),mink.VelocityLimit(model, velocity_limits),collision_avoidance_limit,]l_mid = model.body("left/target").mocapid[0]r_mid = model.body("right/target").mocapid[0]solver = "quadprog"pos_threshold = 5e-3ori_threshold = 5e-3max_iters = 5# Initialize key_callback function.key_callback = TeleopMocap(data)with mujoco.viewer.launch_passive(model=model,data=data,show_left_ui=False,show_right_ui=False,key_callback=key_callback,) as viewer:mujoco.mjv_defaultFreeCamera(model, viewer.cam)# Initialize to the home keyframe.mujoco.mj_resetDataKeyframe(model, data, model.key("neutral_pose").id)configuration.update(data.qpos)mujoco.mj_forward(model, data)posture_task.set_target_from_configuration(configuration)# Initialize mocap targets at the end-effector site.mink.move_mocap_to_frame(model, data, "left/target", "left/gripper", "site")mink.move_mocap_to_frame(model, data, "right/target", "right/gripper", "site")rate = RateLimiter(frequency=200.0, warn=False)# 在主循环外定义时间计数器和阶段标志time_step = 0left_arm_moving = Trueright_arm_moving = Falseleft_gripper_moving = Falseright_gripper_moving = Falseleft_gripper_action = 0.037  # left gripper int qposright_gripper_action = 0.037  # right gripper int qposwhile viewer.is_running():# Update task targets.l_ee_task.set_target(mink.SE3.from_mocap_name(model, data, "left/target"))r_ee_task.set_target(mink.SE3.from_mocap_name(model, data, "right/target"))# Continuously check for autonomous key movement.key_callback.auto_key_move()# Compute velocity and integrate into the next configuration.for i in range(max_iters):vel = mink.solve_ik(configuration,tasks,rate.dt,solver,limits=limits,damping=1e-5,)configuration.integrate_inplace(vel, rate.dt)l_err = l_ee_task.compute_error(configuration)l_pos_achieved = np.linalg.norm(l_err[:3]) <= pos_thresholdl_ori_achieved = np.linalg.norm(l_err[3:]) <= ori_thresholdr_err = r_ee_task.compute_error(configuration)r_pos_achieved = np.linalg.norm(r_err[:3]) <= pos_thresholdr_ori_achieved = np.linalg.norm(r_err[3:]) <= ori_thresholdif (l_pos_achievedand l_ori_achievedand r_pos_achievedand r_ori_achieved):breakdata.ctrl[actuator_ids] = configuration.q[dof_ids]compensate_gravity(model, data, [left_subtree_id, right_subtree_id])# HJX: mocap control# 定义分阶段的时间控制# data.mocap_pos[0] = [-0.18753877, -0.019, 0.32524417]  # left init pos# data.mocap_pos[1] = [0.18753877, -0.019, 0.32524417]  # right init posmocap_pos_left = data.mocap_pos[0]  # left posmocap_pos_right = data.mocap_pos[1]  # right pos# print(mocap_pos_left)mocap_quat_left = data.mocap_quat[0]  # left quat# print(f'mocap_quat_left: {mocap_quat_left}')mocap_quat_right = data.mocap_quat[1]  # right quat# print(f'mocap_quat_right: {mocap_quat_right}')# arm qposleft_arm_action = data.qpos[:6]  # left arm qpos# print(left_arm_action)right_arm_action = data.qpos[8:14]  # right arm qpos# print(right_arm_action)# gripper 的运动范围在 0.01 —— 0.037 (0.01表示闭合的最小值,0.037表示张开的最大值)# left_gripper_action = 0.037  # left gripper int qpos# right_gripper_action = 0.037   # right gripper int qposdata.qpos[6:8] = [left_gripper_action, left_gripper_action]data.qpos[14:16] = [right_gripper_action, right_gripper_action]left_gripper_qpos = data.qpos[6:8]# print(left_gripper_qpos)right_gripper_qpos = data.qpos[14:16]# print(right_gripper_qpos)record = ArmRecorder()arm_joint_position = record.qpos[:6]# print(arm_joint_position)gripper_joint_position = record.qpos[7:8]  # gripper# --- 左臂运动阶段 ---if left_arm_moving:left_arm_action = arm_joint_positionleft_gripper_qpos = gripper_joint_position# 左臂运动完成后切换阶段if time_step >= 100:left_arm_moving = Trueright_arm_moving = Truetime_step = 0  # 重置计时器# # --- 右臂运动阶段 ---# elif right_arm_moving:#     # 随时间步线性移动右臂#     # mocap_pos_right[0] -= 0.001#     # mocap_pos_right[1] -= 0.001#     # mocap_pos_right[2] -= 0.001#     mocap_pos_right -= 0.001##     if time_step >= 200:#         left_arm_moving = False#         right_arm_moving = False#         left_gripper_moving = True#         right_gripper_moving = True#         time_step = 0  # 重置计时器# 应用更新后的 Mocap 位置data.mocap_pos[0] = mocap_pos_leftdata.mocap_pos[1] = mocap_pos_right# 应用更新后的 Mocap 姿态data.mocap_quat[0] = mocap_quat_leftdata.mocap_quat[1] = mocap_quat_right# 应用更新后的 arm qposdata.qpos[:6] = left_arm_action  # left arm qposdata.qpos[8:14] = right_arm_action  # right arm qposdata.qpos[6:8] = left_gripper_qpos  # left gripper qposdata.qpos[14:16] = right_gripper_qpos  # right gripper qpos# 物理仿真步进mujoco.mj_step(model, data)# Visualize at fixed FPS.viewer.sync()rate.sleep()# 更新计时器time_step += 1

运行arm_aloha_real2sim.py代码,效果如下:

可以看到,机械臂的动作和真实世界中的机械臂保持一致了,成功!

后续的研究就可以用真实机械臂来采集仿真环境中的操作数据了,over~~~

创作不易,感谢您的点赞与关注~~~

http://www.xdnf.cn/news/4003.html

相关文章:

  • 【NLP】 31. Retrieval-Augmented Generation(RAG):KNN-LM, RAG、REALM、RETRO、FLARE
  • 【渗透测试】Web服务程序解析漏洞原理、利用方式、防范措施
  • C++进阶之——多态
  • 【C++项目实战】日志系统
  • WEB表单和表格标签综合案例
  • win10启动项管理在哪里设置?开机启动项怎么设置
  • Android工厂模式
  • 抽奖系统(基于Tkinter)
  • 微服务项目中网关服务挂了程序还可以正常运行吗
  • 数学复习笔记 2
  • JAVA在线考试系统考试管理题库管理成绩查询重复考试学生管理教师管理源码
  • JobHistory Server的配置和启动
  • LCD,LED
  • 期末项目Python
  • GoogleTest:GMock初识
  • 嵌入式开发学习日志Day13
  • window 系统 使用ollama + docker + deepseek R1+ Dify 搭建本地个人助手
  • C++笔记之接口`Interface`
  • 恶心的win11更新DIY 设置win11更新为100年
  • 《赤色世界》彩蛋
  • 数据封装的过程
  • 分析atoi(),atol()和atof()三个函数的功能
  • 【今日三题】小红的口罩(小堆) / 春游(模拟) / 数位染色(01背包)
  • 【Bootstrap V4系列】学习入门教程之 组件-卡片(Card)
  • Linux怎么更新已安装的软件
  • sudo useradd -r -s /bin/false -U -m -d /usr/share/ollama ollama解释这行代码的含义
  • 1.openharmony环境搭建
  • osquery在网络安全入侵场景中的应用实战(二)
  • 关于毕业论文,查重,AIGC
  • QT6 源(78):阅读与注释滑动条 QSlider 的源码,其是基类QAbstractSlider 的子类,及其刻度线的属性举例