深度学习环境搭建运行(一) Ubuntu22.04 系统安装 CUDA11.8 和 CUDNN8.6.0 详细步骤(新手入门)
文章目录
- 深度学习环境搭建运行(一) Ubuntu22.04 系统安装 CUDA11.8 和 CUDNN8.6.0 详细步骤(新手入门)
- 1)查看操作系统信息
- 2)查看 conda 版本和 python 版本
- 3)查看 GCC 安装情况
- 4)查看显卡驱动支持 cuda 最高版本
- 5)使用 free 命令来查看系统的内存使用情况
- 6)下载 CUDA
- 7)安装 CUDA
- 8)安装 cuDNN 8.6.0
深度学习环境搭建运行(一) Ubuntu22.04 系统安装 CUDA11.8 和 CUDNN8.6.0 详细步骤(新手入门)
避坑指南!Ubuntu 22.04 保姆级安装 CUDA 11.8 + cuDNN 8.6.0!新手零失败,手把手带你成功配置深度学习环境!
1)查看操作系统信息
操作指令如下:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# cat /etc/os-release
PRETTY_NAME="Ubuntu 22.04.4 LTS"
NAME="Ubuntu"
VERSION_ID="22.04"
VERSION="22.04.4 LTS (Jammy Jellyfish)"
VERSION_CODENAME=jammy
ID=ubuntu
ID_LIKE=debian
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
UBUNTU_CODENAME=jammy
2)查看 conda 版本和 python 版本
操作指令如下:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# python --version
Python 3.10.15
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# which python
/data/miniconda/envs/default/bin/python
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# conda --version
conda 24.7.1
3)查看 GCC 安装情况
安装 cuda 需要用到 GCC,否则报错,操作指令如下:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# gcc --version
gcc (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0
Copyright (C) 2021 Free Software Foundation, Inc.
This is free software; see the source for copying conditions. There is NO
warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
4)查看显卡驱动支持 cuda 最高版本
当前显卡驱动支持的最高版本的 CUDA 为 12.4,操作指令如下:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# nvidia-smi
Thu Jul 19 09:21:14 2025
+-----------------------------------------------------------------------------------------+
| NVIDIA-SMI 550.54.15 Driver Version: 550.54.15 CUDA Version: 12.4 |
|-----------------------------------------+------------------------+----------------------+
| GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|=========================================+========================+======================|
| 0 Tesla P4 Off | 00000000:04:00.0 Off | Off |
| N/A 24C P8 6W / 75W | 0MiB / 8192MiB | 0% Default |
| | | N/A |
+-----------------------------------------+------------------------+----------------------++-----------------------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=========================================================================================|
| No running processes found |
+-----------------------------------------------------------------------------------------+
5)使用 free 命令来查看系统的内存使用情况
确保有足够的内存使用,操作指令如下:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# free -htotal used free shared buff/cache available
Mem: 125Gi 12Gi 48Gi 119Mi 64Gi 112Gi
Swap: 0B 0B 0B
6)下载 CUDA
cuda 下载连接地址:https://developer.nvidia.com/cuda-toolkit-archive
#—# 打开界面如下:
#—# 点击 CUDA Toolkit 11.8.0 窗口跳转至如下界面(选择系统属性固定版本,此处使用系统是 Ubuntu22.04.4 LTS 选择如下):
#—# 如上图所示在终端使用下方指令进行下载:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# wget https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
--2025-07-19 10:24:23-- https://developer.download.nvidia.com/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
Resolving developer.download.nvidia.com (developer.download.nvidia.com)... 23.51.14.155, 23.51.14.152
Connecting to developer.download.nvidia.com (developer.download.nvidia.com)|23.51.14.155|:443... connected.
HTTP request sent, awaiting response... 301 Moved Permanently
Location: https://developer.download.nvidia.cn/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run [following]
--2025-07-19 10:24:23-- https://developer.download.nvidia.cn/compute/cuda/11.8.0/local_installers/cuda_11.8.0_520.61.05_linux.run
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 111.6.201.106, 111.6.201.109
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|111.6.201.106|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 4336730777 (4.0G) [application/octet-stream]
Saving to: ‘cuda_11.8.0_520.61.05_linux.run’cuda_11.8.0_520.61.05_linux.run 100%[====================================================================================================================================>] 4.04G 34.5MB/s in 1m 59s2025-07-19 10:26:23 (34.7 MB/s) - ‘cuda_11.8.0_520.61.05_linux.run’ saved [4336730777/4336730777]
7)安装 CUDA
#—# 下载完成使用下方指令安装:
sh cuda_11.8.0_520.61.05_linux.run
#—# 弹出窗口按< 上下键> 选择"continue",按键盘< 回车键>
#—# 弹出窗口输入"accept",按键盘< 回车键>
#—# 弹出窗口使用< 上下键> 和< 空格键> 选择和取消选择
#—# 最后选择"install" 点击键盘< 回车键>,进行安装,如下图:
#—# 安装好弹出如下图:
#—# 设置 cuda 环境变量
打开的文档里最后添加下方两行代码:
export PATH=$PATH:/usr/local/cuda-11.8/bin
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/usr/local/cuda-11.8/lib64
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# vim ~/.bashrc
见图:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# source ~/.bashrc
#—# 验证 cuda 是否安装成功(打印如下即安装成功)
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding# nvcc -V
nvcc: NVIDIA (R) Cuda compiler driver
Copyright (c) 2005-2022 NVIDIA Corporation
Built on Wed_Sep_21_10:33:58_PDT_2022
Cuda compilation tools, release 11.8, V11.8.89
Build cuda_11.8.r11.8/compiler.31833905_0
8)安装 cuDNN 8.6.0
cuDNN 下载连接地址:https://developer.nvidia.com/rdp/cudnn-archive
#—# 打开网站,按照自己 cuda 的版本和 ubuntu 系统版本找到相应的 cuDNN,此处选择如下图:
#—# 点击下载 deb 文件,复制链接可在命令行执行如下:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# wget -c "https://developer.download.nvidia.cn/compute/cudnn/secure/8.6.0/local_installers/11.8/cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb?__token__=exp=1752721445~hmac=3b1c098ee97ce0ed43bdb45f27876405bf56a6d6bb80e94a1b20e28d0e82e550&t=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJsaW5rLnpoaWh1LmNvbS8/dGFyZ2V0PWh0dHBzJTNBLy9kZXZlbG9wZXIubnZpZGlhLmNvbS9jdWRhLWdwdXMifQ=="
The destination name is too long (273), reducing to 236
--2025-07-17 10:54:19-- https://developer.download.nvidia.cn/compute/cudnn/secure/8.6.0/local_installers/11.8/cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb?__token__=exp=1752721445~hmac=3b1c098ee97ce0ed43bdb45f27876405bf56a6d6bb80e94a1b20e28d0e82e550&t=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJsaW5rLnpoaWh1LmNvbS8/dGFyZ2V0PWh0dHBzJTNBLy9kZXZlbG9wZXIubnZpZGlhLmNvbS9jdWRhLWdwdXMifQ==
Resolving developer.download.nvidia.cn (developer.download.nvidia.cn)... 111.6.201.109, 111.6.201.106
Connecting to developer.download.nvidia.cn (developer.download.nvidia.cn)|111.6.201.109|:443... connected.
HTTP request sent, awaiting response... 200 OK
Length: 884837062 (844M) [application/x-deb]
Saving to: ‘cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb?__token__=exp=1752721445~hmac=3b1c098ee97ce0ed43bdb45f27876405bf56a6d6bb80e94a1b20e28d0e82e550&t=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJsaW5rLnpoaWh1LmNvbS8%2FdGFyZ2V0PWh0dHBzJTNBLy9kZXZlbG9’cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb?__to 100%[========================================================================================================================================>] 843.85M 34.5MB/s in 24s2025-07-17 10:54:43 (35.8 MB/s) - ‘cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb?__token__=exp=1752721445~hmac=3b1c098ee97ce0ed43bdb45f27876405bf56a6d6bb80e94a1b20e28d0e82e550&t=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJsaW5rLnpoaWh1LmNvbS8%2FdGFyZ2V0PWh0dHBzJTNBLy9kZXZlbG9’ saved [884837062/884837062]
#—# 文件重命名
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# mv cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb\?__token__\=exp\=1752721445~hmac\=3b1c098ee97ce0ed43bdb45f27876405bf56a6d6bb80e94a1b20e28d0e82e550\&t\=eyJscyI6IndlYnNpdGUiLCJsc2QiOiJsaW5rLnpoaWh1LmNvbS8%2FdGFyZ2V0PWh0dHBzJTNBLy9kZXZlbG9 cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb
#—# 使用下方指令运行*.deb 文件:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# dpkg -i cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb
Selecting previously unselected package cudnn-local-repo-ubuntu2204-8.6.0.163.
(Reading database ... 35878 files and directories currently installed.)
Preparing to unpack cudnn-local-repo-ubuntu2204-8.6.0.163_1.0-1_amd64.deb ...
Unpacking cudnn-local-repo-ubuntu2204-8.6.0.163 (1.0-1) ...
Setting up cudnn-local-repo-ubuntu2204-8.6.0.163 (1.0-1) ...The public cudnn-local-repo-ubuntu2204-8.6.0.163 GPG key does not appear to be installed.
To install the key, run this command:
sudo cp /var/cudnn-local-repo-ubuntu2204-8.6.0.163/cudnn-local-FAED14DD-keyring.gpg /usr/share/keyrings/
#—# 根据提示拷贝密钥
在上方终端打印的指令提出需要使用下方指令拷贝密钥,可以根据自己安装打印的指令信息去拷贝:
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding/xm_projects# cp /var/cudnn-local-repo-ubuntu2204-8.6.0.163/cudnn-local-FAED14DD-keyring.gpg /usr/share/keyrings/
#—# 重点!重点!重点!(安装 libcudnn8、libcudnn8-dev、libcudnn8-samples 等文件)
见图:
#—# 查看 cuDNN 安装结果(方式一)
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/var/cudnn-local-repo-ubuntu2204-8.6.0.163# cat /usr/include/x86_64-linux-gnu/cudnn_version_v8.h | grep CUDNN_MAJOR -A 2
#define CUDNN_MAJOR 8
#define CUDNN_MINOR 6#define CUDNN_PATCHLEVEL 0
--#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)/* cannot use constexpr here since this is a C-only file */
@@@@@@@@ 或者另一种方式查看 cudnn 版本 @@@@@@@@
#—# 查看 cuDNN 安装结果(方式二)
(default) root@vphlhycvfilovpqi-snow-5dd4c6b7b5-zbdgl:/data/coding# dpkg -l | grep cudnn
ii cudnn-local-repo-ubuntu2204-8.6.0.163 1.0-1 amd64 cudnn-local repository configuration files
ii libcudnn8 8.6.0.163-1+cuda11.8 amd64 cuDNN runtime libraries
ii libcudnn8-dev 8.6.0.163-1+cuda11.8 amd64 cuDNN development libraries and headers
ii libcudnn8-samples 8.6.0.163-1+cuda11.8 amd64 cuDNN samples
<<< 打印版本号,表示安装成功,cuda11.8 和 cudnn8.6.0 至此安装完成>>>