当前位置: 首页 > web >正文

.NET9 实现斐波那契数列(FibonacciSequence)性能测试

.NET 平台上实现 斐波那契数列 并使用 BenchmarkDotNet 进行性能测试,是评估不同算法实现方式性能表现的一种高效且标准化的方法。通过该方式,可以对比递归、迭代、记忆化递归以及结合高性能优化技术(如 Span<T>Memory<T>ArrayPool<T>)的多种实现,在不同输入规模下的执行时间、内存分配和垃圾回收行为。

整个过程包括:

  1. 选择合适的斐波那契实现方式

    • 递归实现:直观但效率低下,尤其在大数值时存在指数级时间复杂度。
    • 迭代实现:性能最优,适用于大多数生产环境。
    • 记忆化递归:通过缓存减少重复计算,提升递归效率。
    • 结合 ArrayPool 的记忆化递归:避免频繁内存分配,降低 GC 压力。
    • 使用 Span<T>Memory<T> 的实现:进一步优化内存访问效率,支持更灵活的异步或池化操作。
  2. 构建基准测试类
    使用 BenchmarkDotNet 提供的 [Benchmark] 特性对每个实现方法进行标注,并通过 [Params] 指定多个输入值(如 N = 10, 30, 40),以模拟不同场景下的运行情况。

  3. 启用诊断功能
    在基准测试类上添加 [MemoryDiagnoser] 等特性,启用内存统计功能,获取每次调用的堆内存分配信息,帮助识别潜在的性能瓶颈。

  4. 运行基准测试
    使用 BenchmarkRunner.Run<T>() 启动测试,生成结构化的性能报告,包含 平均耗时(Mean)、误差范围(Error)、标准差(StdDev)、Gen0/Gen1 垃圾回收次数及内存分配量 等关键指标。

  5. 分析结果并优化实现
    根据测试报告数据,判断哪种实现方式在特定场景下具有最佳性能表现。例如,迭代法通常最快且无内存分配,而结合 ArrayPool<T> 的记忆化递归则在保留递归风格的同时大幅提升了性能。

最终,这一流程不仅验证了各类斐波那契实现的实际性能差异,也为实际项目中选择合适的算法提供了可靠的数据支撑。

项目准备

  • 项目环境
<Project Sdk="Microsoft.NET.Sdk"><PropertyGroup><OutputType>Exe</OutputType><TargetFramework>net9.0</TargetFramework><ImplicitUsings>enable</ImplicitUsings><Nullable>enable</Nullable><PublishAot>true</PublishAot><InvariantGlobalization>true</InvariantGlobalization></PropertyGroup><ItemGroup><PackageReference Include="Datadog.Trace.BenchmarkDotNet" Version="2.61.0" /></ItemGroup></Project>
  • 斐波那契数列实现
// =============================
// FibonacciSequence 斐波那契数列实现
// =============================using System.Buffers;namespace FibonacciSequenceTest;internal class FibonacciSequence
{// 递归实现(效率低)public static long Recursive(int n){if (n <= 1) return n;return Recursive(n - 1) + Recursive(n - 2);}// 迭代实现(高效)public static long Iterative(int n){if (n <= 1) return n;long a = 0, b = 1;for (int i = 2; i <= n; i++){long temp = a + b;a = b;b = temp;}return b;}// 带缓存的递归实现(记忆化)public static long Memoized(int n){var memo = new long[n + 1];return FibMemo(n, memo);}private static long FibMemo(int n, long[] memo){if (n <= 1) return n;if (memo[n] != 0) return memo[n];memo[n] = FibMemo(n - 1, memo) + FibMemo(n - 2, memo);return memo[n];}// 使用 ArrayPool 优化的记忆化递归实现public static long MemoizedWithPooling(int n){// 从 ArrayPool 获取足够大小的缓存数组int length = n + 1;var memo = ArrayPool<long>.Shared.Rent(length);try{return FibMemo(n, memo);}finally{// 用完后归还数组,避免内存泄漏if (memo != null)ArrayPool<long>.Shared.Return(memo);}}// 使用 ArrayPool + Span 优化的记忆化递归实现public static long MemoizedWithSpan(int n){int length = n + 1;var memo = ArrayPool<long>.Shared.Rent(length);try{return FibMemoWithSpan(n, memo.AsSpan());}finally{if (memo != null)ArrayPool<long>.Shared.Return(memo);}}private static long FibMemoWithSpan(int n, Span<long> memo){if (n <= 1) return n;if (memo[n] != 0) return memo[n];memo[n] = FibMemoWithSpan(n - 1, memo) + FibMemoWithSpan(n - 2, memo);return memo[n];}// 使用 ArrayPool + Memory 优化的记忆化递归实现public static long MemoizedWithMemory(int n){int length = n + 1;var memo = ArrayPool<long>.Shared.Rent(length);try{return FibMemoWithMemory(n, memo.AsMemory());}finally{if (memo != null)ArrayPool<long>.Shared.Return(memo);}}private static long FibMemoWithMemory(int n, Memory<long> memo){if (n <= 1) return n;// 将 Memory<long> 转换为 Span<long>,以支持索引操作Span<long> span = memo.Span;if (span[n] != 0) return span[n];span[n] = FibMemoWithMemory(n - 1, memo) + FibMemoWithMemory(n - 2, memo);return span[n];}
}
  • FibonacciSequence 测试类
// =============================
// FibonacciSequence 测试类
// =============================using BenchmarkDotNet.Attributes;
using Datadog.Trace.BenchmarkDotNet;namespace FibonacciSequenceTest;[DatadogDiagnoser]
[MemoryDiagnoser]
public class FibonacciBenchmark
{[Params(10, 30, 40)] // 测试不同的 n 值public int N { get; set; }[Benchmark]public long RecursiveFibonacci() => FibonacciSequence.Recursive(N);[Benchmark]public long IterativeFibonacci() => FibonacciSequence.Iterative(N);[Benchmark]public long MemoizedFibonacci() => FibonacciSequence.Memoized(N);[Benchmark]public long MemoizedWithPoolingFibonacci() => FibonacciSequence.MemoizedWithPooling(N);[Benchmark]public long MemoizedWithSpanFibonacci() => FibonacciSequence.MemoizedWithSpan(N);[Benchmark]public long MemoizedWithMemoryFibonacci() => FibonacciSequence.MemoizedWithMemory(N);
}
  • 使用基准测试

Program.cs 文件中添加如下代码:

using BenchmarkDotNet.Configs;
using BenchmarkDotNet.Running;
using Datadog.Trace.BenchmarkDotNet;namespace FibonacciSequenceTest;internal class Program
{static void Main(string[] args){Console.WriteLine("Hello, SortingBenchmark!");var fibonacciSummary = BenchmarkRunner.Run<FibonacciBenchmark>();}
}

启动测试

进入项目,使用 pwsh 执行如下命令:

dotnet run -c Release

这段文本是一个使用 BenchmarkDotNet 工具对不同 斐波那契数列(Fibonacci)算法实现 的性能基准测试结果报告。它对比了多种实现方式在不同输入规模 N 下的执行效率、内存分配等指标。

FibonacciBenchmark


以下是关键内容的通俗解释:

📊 表格结构说明

列名含义
Method测试的方法名称(不同的 Fibonacci 实现)
N输入参数,表示求第 N 个斐波那契数
Mean平均耗时(单位:纳秒 ns 或 微秒 μs)
Error置信区间的一半(99.9% 置信度)
StdDev标准差,衡量运行时间波动
Median中位数,排除极端值后的时间
Gen0Gen0 垃圾回收次数(每千次操作)
Allocated每次操作分配的托管内存大小

🧪 被测试的斐波那契实现方法

方法名实现方式是否推荐
RecursiveFibonacci普通递归(无优化)❌ 不推荐
IterativeFibonacci迭代法(最高效)✅ 强烈推荐
MemoizedFibonacci使用数组缓存的记忆化递归⚠️ 可用但有内存分配
MemoizedWithPoolingFibonacci使用 ArrayPool<long> 缓存数组优化✅ 推荐
MemoizedWithSpanFibonacci使用 ArrayPool<long> + Span<long> + 缓存✅ 推荐
MemoizedWithMemoryFibonacci使用 ArrayPool<long> + Memory<long> + 缓存✅ 推荐

📈 性能对比分析(按 N 分组)

N = 10 时:

方法平均耗时内存分配
RecursiveFibonacci251.435 ns-
IterativeFibonacci7.234 ns-
MemoizedFibonacci63.627 ns112 B
MemoizedWithPoolingFibonacci18.526 ns-
MemoizedWithSpanFibonacci21.416 ns-
MemoizedWithMemoryFibonacci20.367 ns-

📌 结论:

  • 迭代法最快(仅 7ns)
  • 普通递归较慢
  • 使用池化或 Span/ Memory 优化后的记忆化递归显著优于普通递归

N = 30 时:

方法平均耗时内存分配
RecursiveFibonacci3,372,317 ns(3.37ms)-
IterativeFibonacci26.832 ns-
MemoizedFibonacci301.255 ns272 B
MemoizedWithPoolingFibonacci18.624 ns-
MemoizedWithSpanFibonacci19.883 ns-
MemoizedWithMemoryFibonacci24.130 ns-

📌 结论:

  • 普通递归性能急剧下降(指数级增长)
  • 其他优化方法依然保持稳定低耗时
  • 迭代法仍是最快

N = 40 时:

方法平均耗时内存分配
RecursiveFibonacci416,127,408 ns(约 416ms)-
IterativeFibonacci35.565 ns-
MemoizedFibonacci436.763 ns352 B
MemoizedWithPoolingFibonacci18.548 ns-
MemoizedWithSpanFibonacci19.698 ns-
MemoizedWithMemoryFibonacci20.206 ns-

📌 结论:

  • 普通递归已变得不可接受
  • 所有优化版本仍保持微秒级响应
  • 迭代法依旧最优

✅ 总结与建议

特性推荐实现
最快实现IterativeFibonacci(迭代法)
最节省内存MemoizedWithPoolingFibonacci(结合 ArrayPool)
支持异步和长期持有MemoizedWithMemoryFibonacci
保留递归风格又兼顾性能MemoizedWithPoolingFibonacciMemoizedWithSpanFibonacci

📝 小结

方法性能内存是否推荐
普通递归❌ 极慢
迭代法✅ 极快无分配✅ 强烈推荐
记忆化递归⚠️ 中等一般
记忆化 + ArrayPool/Span/Memory✅ 快无分配✅ 推荐保留递归风格时使用
http://www.xdnf.cn/news/14950.html

相关文章:

  • leetcode918.环形子数组的最大和
  • LangChain4j 框架模仿豆包实现智能对话系统:架构与功能详解
  • 力扣网编程55题:跳跃游戏之逆向思维
  • 【Linux】常用基本指令
  • TinyWebserver学习(9)-HTTP
  • 【Halcon】WPF 自定义Halcon显示控件完整流程与 `OnApplyTemplate` 未触发的根本原因解析!
  • C语言socket编程-补充
  • 面试150 快乐数
  • uniapp启动图被拉伸问题
  • 你若寻,便寻得见 ✨
  • MQTT与HTTP在物联网中的比较:为什么MQTT是更好的选择
  • 大小不足5M,轻量级PDF阅读工具
  • vs code关闭函数形参提示
  • 贪吃蛇游戏设计
  • Linux 内存水位判断机制与实战调优 —— 从卡顿现象到 ftrace 定位全流程
  • AWS WebRTC:通过shell分析viewer端日志文件
  • 结构型智能科技的关键可行性——信息型智能向结构型智能的转变(修改提纲)
  • 力扣 hot100 Day35
  • 模仿学习(Imitation Learning)
  • c++ duiLib环境集成2
  • 使用 DigitalPlat 免费搭配 Cloudflare Tunnel 实现飞牛系统、服务及 SSH 内网穿透教程
  • AIStarter平台使用指南:如何一键卸载已下载的AI项目(最新版操作教程)
  • 【网络与系统安全】强制访问控制——BLP模型
  • latency 对功耗的影响
  • MyDockFinder 绿色便携版 | 一键仿Mac桌面,非常简单
  • Spring Boot + 本地部署大模型实现:安全性与可靠性保障
  • day55-驱动之系统移植II
  • 马尔可夫链:随机过程的记忆法则与演化密码
  • Jenkins 介绍
  • jQuery Mobile 安装使用教程