当前位置: 首页 > ops >正文

【ee类保研面试】数学类---概率论

25保研er,希望将自己的面试复习分享出来,供大家参考
part0—英语类
part1—通信类
part2—信号类
part3—高数类
part100—self项目准备


文章目录

    • **3. 概率论要点**
      • **3.1 无偏性、有效性、一致性(相合性)**
      • **3.2 全概率公式与贝叶斯公式**
      • **3.3 大数定律与中心极限定理**
      • **3.4 常见概率分布**
      • **3.5 概率密度函数(PDF)**
      • **3.6 联合概率与边缘概率**
      • **3.7 概率论与数理统计的关系**
      • **3.8 马尔可夫过程**
      • **3.9 假设检验与两类错误**
      • **3.10 变量与随机变量**
      • **3.11 数学期望与方差**
      • **3.12 独立性与相关性**
      • **3.13 协方差与相关系数**
    • 面试经典问题
      • **📌 概率论面试真题整理**
        • 【北航】【北大】贝叶斯公式是什么,有什么应用
        • 【北航】期望和方差的定义
        • 【北航】全概率公式
        • 【复旦】【22年复旦又问到了!】最大似然估计(MLE)
        • 【复旦】【北航】解释独立性、相关性、互斥性
        • 【北大】【北航】大数定律 & 中心极限定理
        • 【msra】熵是什么
        • 【北航】【复旦】高斯分布(正态分布)是什么
        • 【北航】概率密度函数 是什么
        • 【北航】二项分布、超几何分布
        • 【北航】泊松分布


3. 概率论要点


3.1 无偏性、有效性、一致性(相合性)

  • 无偏性:估计量的期望等于参数真值,即估计不系统偏差。
  • 有效性:在所有无偏估计中,方差最小者最有效。
  • 一致性:样本数增大时,估计值趋近于真实参数。

✅ 面试常问:“无偏是否代表一致?”、“有效性和方差有什么关系?”


3.2 全概率公式与贝叶斯公式

  • 全概率公式:用于将复杂事件的概率,分解为多个互斥事件条件下的加权求和。
  • 贝叶斯公式:已知结果,反推出原因;利用先验和似然计算后验概率。
  • 对比:全概率——因推果;贝叶斯——果溯因。

✅ 面试常问:“贝叶斯公式的直观解释?”、“和全概率公式的关系?”


3.3 大数定律与中心极限定理

  • 切比雪夫大数定律:样本均值趋近于期望,适用于有限方差的变量。
  • 伯努利大数定律:事件频率趋近于其真实概率。
  • 中心极限定理:大量独立变量之和趋近正态分布,无论原分布如何。

✅ 面试常问:“大数定律和中心极限定理的区别?”、“为什么正态分布广泛存在?”


3.4 常见概率分布

  • 正态分布:连续型分布,钟形曲线,均值为对称中心。
  • 泊松分布:描述单位时间内某事件发生次数,常用于稀疏事件建模。
  • 指数分布:描述等待时间,记忆性强,常用于寿命分析。

✅ 面试常问:“泊松和指数有什么联系?”、“为什么中心极限定理指向正态?”


3.5 概率密度函数(PDF)

  • 定义连续型随机变量的分布,函数值本身非概率。
  • 用积分求区间概率:P(a<X<b)=∫abf(x)dxP(a < X < b) = \int_a^b f(x)\,dxP(a<X<b)=abf(x)dx

✅ 面试常问:“PDF值能表示概率吗?”、“如何通过密度函数求概率?”


3.6 联合概率与边缘概率

  • 联合概率:描述多个随机变量同时取某些值的概率。
  • 边缘概率:在联合概率的基础上,固定其他变量后得到某一变量的概率。

✅ 面试常问:“怎么从联合分布求边缘分布?”、“联合≠乘积表示什么?”


3.7 概率论与数理统计的关系

  • 概率论:从模型出发,推测数据如何分布(从因到果)。
  • 数理统计:从数据出发,推测模型参数(从果到因)。

✅ 面试常问:“两者核心区别?”、“你学的内容更偏概率论还是统计?”


3.8 马尔可夫过程

  • 一类随机过程,当前状态只依赖前一状态,不依赖更早状态。
  • 特点:无后效性(记忆性弱)、状态转移矩阵描述过程。

✅ 面试常问:“马尔可夫性本质是什么?”、“怎么建转移概率矩阵?”


3.9 假设检验与两类错误

  • 定义:对总体参数进行判断,基于样本做出“接受”或“拒绝”决策。
  • 一类错误:假设真实但被拒绝(弃真)。
  • 二类错误:假设错误但未拒绝(留伪)。

✅ 面试常问:“p值和第一类错误的关系?”、“犯错概率如何平衡?”


3.10 变量与随机变量

  • 变量:可变数值,没有概率含义。
  • 随机变量:每个取值有概率分布,反映不确定性。

✅ 面试常问:“随机变量为什么需要分布?”、“变量一定是随机的吗?”


3.11 数学期望与方差

  • 数学期望:加权平均值,反映长期平均水平。
  • 方差:衡量数据离散程度,是波动性的量度。

✅ 面试常问:“期望和平均值关系?”、“方差为0说明什么?”


3.12 独立性与相关性

  • 独立性:事件之间完全无影响。
  • 相关性:描述变量间线性关系,可正相关或负相关。

✅ 面试常问:“独立一定不相关吗?”、“不相关是否意味着独立?”


3.13 协方差与相关系数

  • 协方差:刻画变量的联合变化方向,有量纲。
  • 相关系数:协方差的无量纲归一化,值在 -1 到 1 之间。

✅ 面试常问:“为什么要用相关系数?”、“两个变量无协方差就独立吗?”


面试经典问题


📌 概率论面试真题整理


【北航】【北大】贝叶斯公式是什么,有什么应用
  • 已知 B 求 A 的概率,等于 AB 同时发生的概率 / B 的概率。
  • 即事情已经发生,求是哪件事导致的(从果推因)。
  • 也可理解为利用先验和似然来计算后验概率。

【北航】期望和方差的定义
  • 数学期望:加权平均值,反映随机变量的中心趋势。
  • 方差:衡量变量与其期望之间的离散程度。

【北航】全概率公式
  • 必须是完备事件组(两两互斥、联合覆盖样本空间)。
  • 公式:P(B)=∑iP(B∣Ai)P(Ai)P(B) = \sum_i P(B|A_i)P(A_i)P(B)=iP(BAi)P(Ai)

【复旦】【22年复旦又问到了!】最大似然估计(MLE)
  • 概率是从参数出发预测数据;似然是从数据出发推测参数。
  • 最大似然函数:L(θ∣x)=P(x∣θ)L(\theta|x) = P(x|\theta)L(θx)=P(xθ)
  • 应用:用于估计模型参数(如正态分布的均值和方差)

【复旦】【北航】解释独立性、相关性、互斥性
  • 独立性:互不影响,P(A∩B) = P(A)P(B),条件概率等于原概率。
  • 互斥性:不能同时发生,P(A∩B) = 0。
  • 条件独立:P(AB∣C)=P(A∣C)P(B∣C)
  • 协方差:衡量两个变量的线性相关强度。
  • 相关系数:对协方差归一化处理,消除量纲影响。
  • 关系:独立 ⇒ 不相关;不相关 ⇏ 独立(举例:Y = X²)

【北大】【北航】大数定律 & 中心极限定理
  • 切比雪夫大数定律:样本均值趋近于期望。
  • 伯努利大数定律:频率趋近于概率。
  • 辛钦大数定律:样本均值 → 数学期望(常见表述)。
  • 中心极限定理:样本均值分布趋近正态分布(适用于任意分布)。
  • 应用:蒙特卡罗模拟、误差估计、置信区间计算等。

【msra】熵是什么
  • 熵衡量信息的不确定性或平均信息量。
  • 定义:H(X)=−∑P(xi)log⁡P(xi)H(X) = -\sum P(x_i) \log P(x_i)H(X)=P(xi)logP(xi)
  • 应用:编码、压缩、通信系统中衡量信息量。

【北航】【复旦】高斯分布(正态分布)是什么
  • 定义:X∼N(μ,σ2)X \sim N(\mu, \sigma^2)XN(μ,σ2)
  • 密度函数为钟形曲线,μ 为均值决定位置,σ 控制分布宽度。
  • 标准正态分布:μ = 0, σ = 1
  • 应用:赋分系统、误差建模、中心极限定理等。

【北航】概率密度函数 是什么
  • 用于描述连续型随机变量的概率分布。
  • 单点概率为0,区间概率由积分给出。
  • 概率密度 = 区间概率 / 区间长度(极限形式)

【北航】二项分布、超几何分布
  • 二项分布:n 次独立伯努利试验中,事件 A 发生 k 次的概率分布。
  • 超几何分布:有限总体中不放回抽取 n 个样本,成功抽到指定类型的次数分布。

【北航】泊松分布
  • 描述单位时间或单位面积内事件发生的次数,λ 为平均次数。
  • 应用:建模稀疏事件,如交通事故、顾客到达等。
  • 二项分布近似形式(当 n 很大、p 很小时,λ = np)。

http://www.xdnf.cn/news/17168.html

相关文章:

  • 嵌入式硬件学习(十一)—— platform驱动框架
  • 基于 HT 引擎实现 3D 智慧物流转运中心一体化管控系统
  • 基于开源链动2+1模式AI智能名片S2B2C商城小程序的用户留存策略研究
  • 计算机基础·linux系统
  • 解决Git提交人信息默认全局化问题:让提交人自动关联当前用户
  • 阿里云部署若依后,浏览器能正常访问,但是apifox和小程序访问后报错链接被重置
  • 【保姆级喂饭教程】python基于mysql-connector-python的数据库操作通用封装类(连接池版)
  • 动态代理常用的两种方式?
  • 大疆无人机使用eport连接Jetson主板实现目标检测
  • 异构系统数据集成之数据源管理:打通企业数据孤岛的关键一步
  • TDengine IDMP 背后的技术三问:目录、标准与情景
  • ​ubuntu22.04系统入门 (四)linux入门命令 权限管理、ACL权限、管道与重定向
  • 思途AOP学习笔记 0806
  • day20|学习前端
  • 比特币量化模型高级因子筛选与信号生成报告
  • 数据大集网:以数据为纽带,重构企业贷获客生态的助贷平台实践
  • 重生之我在暑假学习微服务第十一天《配置篇》+网关篇错误订正
  • 【图像处理基石】什么是数字高程模型?如何使用数字高程模型?
  • HarmonyOS应用开发环境搭建以及快速入门介绍
  • Diamond基础1:认识Lattice器件
  • 【LeetCode 热题 100】347. 前 K 个高频元素——(解法三)桶排序
  • 接口——串口uart(485)
  • 常用排序方法
  • LeetCode 面试经典 150_数组/字符串_O(1)时间插入、删除和获取随机元素(12_380_C++_中等)(哈希表)
  • Java throw exception时需要重点关注的事情!
  • 项目中MySQL遇到的索引失效的问题
  • QT+opencv+yolov8推理
  • 基于RPR模型的机械臂手写器simulink建模与仿真
  • 优选算法1
  • YOLOv11改进:集成FocusedLinearAttention与C2PSA注意力机制实现性能提升