半无界波动方程混合条件求解
考虑半无界波动方程问题:
{ u t t − u x x = 0 , x > 0 , t > 0 , ( u x + ( sin t ) u ) ∣ x = 0 = sin t , t > 0 , u ∣ t = 0 = u t ∣ t = 0 = 0. \begin{cases} u_{tt} - u_{xx} = 0, & x > 0, t > 0, \\ \left(u_x + (\sin t)u\right)|_{x=0} = \sin t, & t > 0, \\ u|_{t=0} = u_t|_{t=0} = 0. \end{cases} ⎩⎪⎨⎪⎧utt−uxx=0,(ux+(sint)u)∣x=0=sint,u∣t=0=ut∣t=0=0.x>0,t>0,t>0,
解法分析
该问题为半无界区域( x > 0 x > 0 x>0) 上的波动方程,具有混合边界条件和零初始条件。由于边界条件含时间依赖项 sin t \sin t sint,采用特征线法(d’Alembert 解法)结合边界条件求解。
波动方程的通解为:
u ( x , t ) = f ( t − x ) + g ( t + x ) , u(x, t) = f(t - x) + g(t + x), u(x,t)=f(t−x)+g(t+x),
其中 f f f 表示右行波, g g g 表示左行波。
应用初始条件
初始条件: u ( x , 0 ) = 0 u(x, 0) = 0 u(x,0)=0, u t ( x , 0 ) = 0 u_t(x, 0) = 0 ut(x,0)=0,对于 x > 0 x > 0 x>0。
- 在 t = 0 t = 0 t=0:
u ( x , 0 ) = f ( − x ) + g ( x ) = 0 , x > 0. u(x, 0) = f(-x) + g(x) = 0, \quad x > 0. u(x,0)=f(−x)+g(x)=0,x>0. - 速度条件:
u t ( x , t ) = f ′ ( t − x ) + g ′ ( t + x ) , u_t(x, t) = f'(t - x) + g'(t + x), ut(x,t)=f′(t−x)+g′(t+x),
u t ( x , 0 ) = f ′ ( − x ) + g ′ ( x ) = 0 , x > 0. u_t(x, 0) = f'(-x) + g'(x) = 0, \quad x > 0. ut(x,0)=f′(−x)+g′(x)=0,x>0.
令 η = x > 0 \eta = x > 0 η=x>0,得方程组:
{ f ( − η ) + g ( η ) = 0 , f ′ ( − η ) + g ′ ( η ) = 0. \begin{cases} f(-\eta) + g(\eta) = 0, \\ f'(-\eta) + g'(\eta) = 0. \end{cases} {f(−η)+g(η)=0,f′(−η)+g′(η)=0.
对第一方程求导:
− f ′ ( − η ) + g ′ ( η ) = 0. -f'(-\eta) + g'(\eta) = 0. −f′(−η)+g′(η)=0.
结合第二方程:
f ′ ( − η ) + g ′ ( η ) = 0 , − f ′ ( − η ) + g ′ ( η ) = 0. f'(-\eta) + g'(\eta) = 0, \quad -f'(-\eta) + g'(\eta) = 0. f′(−η)+g′(η)=0,−f′(−η)+g′(η)=0.
相加得 2 g ′ ( η ) = 0 2g'(\eta) = 0 2g′(η)=0,所以 g ′ ( η ) = 0 g'(\eta) = 0 g′(η)=0,即 g ( η ) = c g(\eta) = c g(η)=c(常数)。代入第二方程:
f ′ ( − η ) = 0 , f'(-\eta) = 0, f′(−η)=0,
即 f ( ξ ) = k f(\xi) = k f(ξ)=k(常数)对于 ξ < 0 \xi < 0 ξ<0。代入第一方程:
f ( − η ) + g ( η ) = k + c = 0 ⟹ c = − k . f(-\eta) + g(\eta) = k + c = 0 \implies c = -k. f(−η)+g(η)=k+c=0⟹c=−k.
因此:
- 当自变量为负时, f ( ξ ) = k f(\xi) = k f(ξ)=k( ξ < 0 \xi < 0 ξ<0)。
- 当自变量为正时, g ( η ) = − k g(\eta) = -k g(η)=−k( η > 0 \eta > 0 η>0)。
通解为:
u ( x , t ) = f ( t − x ) + g ( t + x ) . u(x, t) = f(t - x) + g(t + x). u(x,t)=f(t−x)+g(t+x).
其中 g ( t + x ) = − k g(t + x) = -k g(t+x)=−k(因为 t + x > 0 t + x > 0 t+x>0)。所以:
u ( x , t ) = f ( t − x ) − k . u(x, t) = f(t - x) - k. u(x,t)=f(t−x)−k.
函数 f f f 的定义取决于 t − x t - x t−x 的符号:
- 若 t − x < 0 t - x < 0 t−x<0,则 f ( t − x ) = k f(t - x) = k f(t−x)=k,故 u ( x , t ) = k − k = 0 u(x, t) = k - k = 0 u(x,t)=k−k=0。
- 若 t − x > 0 t - x > 0 t−x>0,则 f ( t − x ) f(t - x) f(t−x) 待定,记为 f + ( t − x ) f_+(t - x) f+(t−x),故 u ( x , t ) = f + ( t − x ) − k u(x, t) = f_+(t - x) - k u(x,t)=f+(t−x)−k。
应用边界条件
边界条件: ( u x + ( sin t ) u ) ∣ x = 0 = sin t \left. \left( u_x + (\sin t) u \right) \right|_{x=0} = \sin t (ux+(sint)u)∣x=0=sint.
在 x = 0 x = 0 x=0:
u ( 0 , t ) = f ( t − 0 ) + g ( t + 0 ) = f ( t ) + g ( t ) = f ( t ) − k , u(0, t) = f(t - 0) + g(t + 0) = f(t) + g(t) = f(t) - k, u(0,t)=f(t−0)+g(t+0)=f(t)+g(t)=f(t)−k,
u x ( x , t ) = − f ′ ( t − x ) + g ′ ( t + x ) , u x ( 0 , t ) = − f ′ ( t ) + g ′ ( t ) . u_x(x, t) = -f'(t - x) + g'(t + x), \quad u_x(0, t) = -f'(t) + g'(t). ux(x,t)=−f′(t−x)+g′(t+x),ux(0,t)=−f′(t)+g′(t).
由于 g ( t ) = − k g(t) = -k g(t)=−k(常数)对于 t > 0 t > 0 t>0,有 g ′ ( t ) = 0 g'(t) = 0 g′(t)=0,所以:
u x ( 0 , t ) = − f ′ ( t ) . u_x(0, t) = -f'(t). ux(0,t)=−f′(t).
边界条件:
u x ( 0 , t ) + sin t ⋅ u ( 0 , t ) = − f ′ ( t ) + sin t ⋅ ( f ( t ) − k ) = sin t , u_x(0, t) + \sin t \cdot u(0, t) = -f'(t) + \sin t \cdot (f(t) - k) = \sin t, ux(0,t)+sint⋅u(0,t)=−f′(t)+sint⋅(f(t)−k)=sint,
整理得:
− f ′ ( t ) + sin t ⋅ f ( t ) − k sin t = sin t , -f'(t) + \sin t \cdot f(t) - k \sin t = \sin t, −f′(t)+sint⋅f(t)−ksint=sint,
− f ′ ( t ) + sin t ⋅ f ( t ) = ( 1 + k ) sin t , -f'(t) + \sin t \cdot f(t) = (1 + k) \sin t, −f′(t)+sint⋅f(t)=(1+k)sint,
即:
f ′ ( t ) − sin t ⋅ f ( t ) = − ( 1 + k ) sin t . f'(t) - \sin t \cdot f(t) = -(1 + k) \sin t. f′(t)−sint⋅f(t)=−(1+k)sint.
这是一阶线性常微分方程。积分因子为:
μ ( t ) = e ∫ − sin t d t = e cos t . \mu(t) = e^{\int -\sin t dt} = e^{\cos t}. μ(t)=e∫−sintdt=ecost.
乘以积分因子:
d d t ( f e cos t ) = − ( 1 + k ) sin t ⋅ e cos t . \frac{d}{dt} \left( f e^{\cos t} \right) = -(1 + k) \sin t \cdot e^{\cos t}. dtd(fecost)=−(1+k)sint⋅ecost.
积分:
f e cos t = − ( 1 + k ) ∫ sin t ⋅ e cos t d t + C . f e^{\cos t} = -(1 + k) \int \sin t \cdot e^{\cos t} dt + C. fecost=−(1+k)∫sint⋅ecostdt+C.
计算积分(令 u = cos t u = \cos t u=cost, d u = − sin t d t du = -\sin t dt du=−sintdt):
∫ sin t ⋅ e cos t d t = ∫ − e u d u = − e u = − e cos t . \int \sin t \cdot e^{\cos t} dt = \int -e^u du = -e^u = -e^{\cos t}. ∫sint⋅ecostdt=∫−eudu=−eu=−ecost.
所以:
f e cos t = − ( 1 + k ) ( − e cos t ) + C = ( 1 + k ) e cos t + C , f e^{\cos t} = -(1 + k) (-e^{\cos t}) + C = (1 + k) e^{\cos t} + C, fecost=−(1+k)(−ecost)+C=(1+k)ecost+C,
f ( t ) = ( 1 + k ) + C e − cos t . f(t) = (1 + k) + C e^{-\cos t}. f(t)=(1+k)+Ce−cost.
连续性条件和确定常数
在 t = 0 + t = 0^+ t=0+, f ( 0 + ) = ( 1 + k ) + C e − cos 0 = ( 1 + k ) + C e − 1 f(0^+) = (1 + k) + C e^{-\cos 0} = (1 + k) + C e^{-1} f(0+)=(1+k)+Ce−cos0=(1+k)+Ce−1。在 t = 0 − t = 0^- t=0−, f ( 0 − ) = k f(0^-) = k f(0−)=k。要求连续性:
( 1 + k ) + C e − 1 = k ⟹ 1 + C e = 0 ⟹ C = − e . (1 + k) + C e^{-1} = k \implies 1 + \frac{C}{e} = 0 \implies C = -e. (1+k)+Ce−1=k⟹1+eC=0⟹C=−e.
代入:
f ( t ) = ( 1 + k ) − e ⋅ e − cos t = 1 + k − e 1 − cos t . f(t) = (1 + k) - e \cdot e^{-\cos t} = 1 + k - e^{1 - \cos t}. f(t)=(1+k)−e⋅e−cost=1+k−e1−cost.
因此:
u ( 0 , t ) = f ( t ) − k = ( 1 + k − e 1 − cos t ) − k = 1 − e 1 − cos t . u(0, t) = f(t) - k = (1 + k - e^{1 - \cos t}) - k = 1 - e^{1 - \cos t}. u(0,t)=f(t)−k=(1+k−e1−cost)−k=1−e1−cost.
常数 k k k 被消除。
通解:
- 当 t − x < 0 t - x < 0 t−x<0, u ( x , t ) = 0 u(x, t) = 0 u(x,t)=0。
- 当 t − x > 0 t - x > 0 t−x>0, u ( x , t ) = f ( t − x ) − k = ( 1 + k − e 1 − cos ( t − x ) ) − k = 1 − e 1 − cos ( t − x ) u(x, t) = f(t - x) - k = (1 + k - e^{1 - \cos (t - x)}) - k = 1 - e^{1 - \cos (t - x)} u(x,t)=f(t−x)−k=(1+k−e1−cos(t−x))−k=1−e1−cos(t−x)。
在 t = x t = x t=x 处,左极限和右极限均为 0,连续。
最终解
u ( x , t ) = { 0 , 0 < t ≤ x , 1 − e 1 − cos ( t − x ) , t > x . u(x, t) = \begin{cases} 0, & 0 < t \leq x, \\ 1 - e^{1 - \cos (t - x)}, & t > x. \end{cases} u(x,t)={0,1−e1−cos(t−x),0<t≤x,t>x.
验证
-
波动方程:在 t ≤ x t \leq x t≤x, u = 0 u = 0 u=0,满足。在 t > x t > x t>x,令 ξ = t − x \xi = t - x ξ=t−x:
u = 1 − e 1 − cos ξ , u t = − e 1 − cos ξ sin ξ , u x = e 1 − cos ξ sin ξ . u = 1 - e^{1 - \cos \xi}, \quad u_t = -e^{1 - \cos \xi} \sin \xi, \quad u_x = e^{1 - \cos \xi} \sin \xi. u=1−e1−cosξ,ut=−e1−cosξsinξ,ux=e1−cosξsinξ.
二阶导数:
u t t = − e 1 − cos ξ ( sin 2 ξ + cos ξ ) , u x x = − e 1 − cos ξ ( sin 2 ξ + cos ξ ) , u_{tt} = -e^{1 - \cos \xi} (\sin^2 \xi + \cos \xi), \quad u_{xx} = -e^{1 - \cos \xi} (\sin^2 \xi + \cos \xi), utt=−e1−cosξ(sin2ξ+cosξ),uxx=−e1−cosξ(sin2ξ+cosξ),
u t t − u x x = 0. u_{tt} - u_{xx} = 0. utt−uxx=0. -
初始条件:当 t = 0 t = 0 t=0, x > 0 x > 0 x>0,则 t = 0 ≤ x t = 0 \leq x t=0≤x,所以 u = 0 u = 0 u=0。速度 u t = 0 u_t = 0 ut=0(因为在 t < x t < x t<x 区域 u ≡ 0 u \equiv 0 u≡0)。
-
边界条件:在 x = 0 x = 0 x=0, t > 0 t > 0 t>0,则 t > x t > x t>x:
u ( 0 , t ) = 1 − e 1 − cos t , u x ( 0 , t ) = e 1 − cos t sin t . u(0, t) = 1 - e^{1 - \cos t}, \quad u_x(0, t) = e^{1 - \cos t} \sin t. u(0,t)=1−e1−cost,ux(0,t)=e1−costsint.
u x + sin t ⋅ u = e 1 − cos t sin t + sin t ( 1 − e 1 − cos t ) = sin t . u_x + \sin t \cdot u = e^{1 - \cos t} \sin t + \sin t (1 - e^{1 - \cos t}) = \sin t. ux+sint⋅u=e1−costsint+sint(1−e1−cost)=sint.
满足。
解为:
u ( x , t ) = { 0 当 0 < t ≤ x 1 − e 1 − cos ( t − x ) 当 t > x \boxed{u(x,t) = \begin{cases} 0 & \text{当 } 0 < t \leq x \\ 1 - \mathrm{e}^{1 - \cos (t - x)} & \text{当 } t > x \end{cases}} u(x,t)={01−e1−cos(t−x)当 0<t≤x当 t>x