当前位置: 首页 > ops >正文

半无界波动方程混合条件求解

考虑半无界波动方程问题:
{ u t t − u x x = 0 , x > 0 , t > 0 , ( u x + ( sin ⁡ t ) u ) ∣ x = 0 = sin ⁡ t , t > 0 , u ∣ t = 0 = u t ∣ t = 0 = 0. \begin{cases} u_{tt} - u_{xx} = 0, & x > 0, t > 0, \\ \left(u_x + (\sin t)u\right)|_{x=0} = \sin t, & t > 0, \\ u|_{t=0} = u_t|_{t=0} = 0. \end{cases} uttuxx=0,(ux+(sint)u)x=0=sint,ut=0=utt=0=0.x>0,t>0,t>0,

解法分析

该问题为半无界区域( x > 0 x > 0 x>0) 上的波动方程,具有混合边界条件和零初始条件。由于边界条件含时间依赖项 sin ⁡ t \sin t sint,采用特征线法(d’Alembert 解法)结合边界条件求解。

波动方程的通解为:
u ( x , t ) = f ( t − x ) + g ( t + x ) , u(x, t) = f(t - x) + g(t + x), u(x,t)=f(tx)+g(t+x),
其中 f f f 表示右行波, g g g 表示左行波。

应用初始条件

初始条件: u ( x , 0 ) = 0 u(x, 0) = 0 u(x,0)=0 u t ( x , 0 ) = 0 u_t(x, 0) = 0 ut(x,0)=0,对于 x > 0 x > 0 x>0

  • t = 0 t = 0 t=0
    u ( x , 0 ) = f ( − x ) + g ( x ) = 0 , x > 0. u(x, 0) = f(-x) + g(x) = 0, \quad x > 0. u(x,0)=f(x)+g(x)=0,x>0.
  • 速度条件:
    u t ( x , t ) = f ′ ( t − x ) + g ′ ( t + x ) , u_t(x, t) = f'(t - x) + g'(t + x), ut(x,t)=f(tx)+g(t+x),
    u t ( x , 0 ) = f ′ ( − x ) + g ′ ( x ) = 0 , x > 0. u_t(x, 0) = f'(-x) + g'(x) = 0, \quad x > 0. ut(x,0)=f(x)+g(x)=0,x>0.

η = x > 0 \eta = x > 0 η=x>0,得方程组:
{ f ( − η ) + g ( η ) = 0 , f ′ ( − η ) + g ′ ( η ) = 0. \begin{cases} f(-\eta) + g(\eta) = 0, \\ f'(-\eta) + g'(\eta) = 0. \end{cases} {f(η)+g(η)=0,f(η)+g(η)=0.
对第一方程求导:
− f ′ ( − η ) + g ′ ( η ) = 0. -f'(-\eta) + g'(\eta) = 0. f(η)+g(η)=0.
结合第二方程:
f ′ ( − η ) + g ′ ( η ) = 0 , − f ′ ( − η ) + g ′ ( η ) = 0. f'(-\eta) + g'(\eta) = 0, \quad -f'(-\eta) + g'(\eta) = 0. f(η)+g(η)=0,f(η)+g(η)=0.
相加得 2 g ′ ( η ) = 0 2g'(\eta) = 0 2g(η)=0,所以 g ′ ( η ) = 0 g'(\eta) = 0 g(η)=0,即 g ( η ) = c g(\eta) = c g(η)=c(常数)。代入第二方程:
f ′ ( − η ) = 0 , f'(-\eta) = 0, f(η)=0,
f ( ξ ) = k f(\xi) = k f(ξ)=k(常数)对于 ξ < 0 \xi < 0 ξ<0。代入第一方程:
f ( − η ) + g ( η ) = k + c = 0 ⟹ c = − k . f(-\eta) + g(\eta) = k + c = 0 \implies c = -k. f(η)+g(η)=k+c=0c=k.
因此:

  • 当自变量为负时, f ( ξ ) = k f(\xi) = k f(ξ)=k ξ < 0 \xi < 0 ξ<0)。
  • 当自变量为正时, g ( η ) = − k g(\eta) = -k g(η)=k η > 0 \eta > 0 η>0)。

通解为:
u ( x , t ) = f ( t − x ) + g ( t + x ) . u(x, t) = f(t - x) + g(t + x). u(x,t)=f(tx)+g(t+x).
其中 g ( t + x ) = − k g(t + x) = -k g(t+x)=k(因为 t + x > 0 t + x > 0 t+x>0)。所以:
u ( x , t ) = f ( t − x ) − k . u(x, t) = f(t - x) - k. u(x,t)=f(tx)k.
函数 f f f 的定义取决于 t − x t - x tx 的符号:

  • t − x < 0 t - x < 0 tx<0,则 f ( t − x ) = k f(t - x) = k f(tx)=k,故 u ( x , t ) = k − k = 0 u(x, t) = k - k = 0 u(x,t)=kk=0
  • t − x > 0 t - x > 0 tx>0,则 f ( t − x ) f(t - x) f(tx) 待定,记为 f + ( t − x ) f_+(t - x) f+(tx),故 u ( x , t ) = f + ( t − x ) − k u(x, t) = f_+(t - x) - k u(x,t)=f+(tx)k

应用边界条件

边界条件: ( u x + ( sin ⁡ t ) u ) ∣ x = 0 = sin ⁡ t \left. \left( u_x + (\sin t) u \right) \right|_{x=0} = \sin t (ux+(sint)u)x=0=sint.

x = 0 x = 0 x=0
u ( 0 , t ) = f ( t − 0 ) + g ( t + 0 ) = f ( t ) + g ( t ) = f ( t ) − k , u(0, t) = f(t - 0) + g(t + 0) = f(t) + g(t) = f(t) - k, u(0,t)=f(t0)+g(t+0)=f(t)+g(t)=f(t)k,
u x ( x , t ) = − f ′ ( t − x ) + g ′ ( t + x ) , u x ( 0 , t ) = − f ′ ( t ) + g ′ ( t ) . u_x(x, t) = -f'(t - x) + g'(t + x), \quad u_x(0, t) = -f'(t) + g'(t). ux(x,t)=f(tx)+g(t+x),ux(0,t)=f(t)+g(t).
由于 g ( t ) = − k g(t) = -k g(t)=k(常数)对于 t > 0 t > 0 t>0,有 g ′ ( t ) = 0 g'(t) = 0 g(t)=0,所以:
u x ( 0 , t ) = − f ′ ( t ) . u_x(0, t) = -f'(t). ux(0,t)=f(t).
边界条件:
u x ( 0 , t ) + sin ⁡ t ⋅ u ( 0 , t ) = − f ′ ( t ) + sin ⁡ t ⋅ ( f ( t ) − k ) = sin ⁡ t , u_x(0, t) + \sin t \cdot u(0, t) = -f'(t) + \sin t \cdot (f(t) - k) = \sin t, ux(0,t)+sintu(0,t)=f(t)+sint(f(t)k)=sint,
整理得:
− f ′ ( t ) + sin ⁡ t ⋅ f ( t ) − k sin ⁡ t = sin ⁡ t , -f'(t) + \sin t \cdot f(t) - k \sin t = \sin t, f(t)+sintf(t)ksint=sint,
− f ′ ( t ) + sin ⁡ t ⋅ f ( t ) = ( 1 + k ) sin ⁡ t , -f'(t) + \sin t \cdot f(t) = (1 + k) \sin t, f(t)+sintf(t)=(1+k)sint,
即:
f ′ ( t ) − sin ⁡ t ⋅ f ( t ) = − ( 1 + k ) sin ⁡ t . f'(t) - \sin t \cdot f(t) = -(1 + k) \sin t. f(t)sintf(t)=(1+k)sint.

这是一阶线性常微分方程。积分因子为:
μ ( t ) = e ∫ − sin ⁡ t d t = e cos ⁡ t . \mu(t) = e^{\int -\sin t dt} = e^{\cos t}. μ(t)=esintdt=ecost.
乘以积分因子:
d d t ( f e cos ⁡ t ) = − ( 1 + k ) sin ⁡ t ⋅ e cos ⁡ t . \frac{d}{dt} \left( f e^{\cos t} \right) = -(1 + k) \sin t \cdot e^{\cos t}. dtd(fecost)=(1+k)sintecost.
积分:
f e cos ⁡ t = − ( 1 + k ) ∫ sin ⁡ t ⋅ e cos ⁡ t d t + C . f e^{\cos t} = -(1 + k) \int \sin t \cdot e^{\cos t} dt + C. fecost=(1+k)sintecostdt+C.
计算积分(令 u = cos ⁡ t u = \cos t u=cost d u = − sin ⁡ t d t du = -\sin t dt du=sintdt):
∫ sin ⁡ t ⋅ e cos ⁡ t d t = ∫ − e u d u = − e u = − e cos ⁡ t . \int \sin t \cdot e^{\cos t} dt = \int -e^u du = -e^u = -e^{\cos t}. sintecostdt=eudu=eu=ecost.
所以:
f e cos ⁡ t = − ( 1 + k ) ( − e cos ⁡ t ) + C = ( 1 + k ) e cos ⁡ t + C , f e^{\cos t} = -(1 + k) (-e^{\cos t}) + C = (1 + k) e^{\cos t} + C, fecost=(1+k)(ecost)+C=(1+k)ecost+C,
f ( t ) = ( 1 + k ) + C e − cos ⁡ t . f(t) = (1 + k) + C e^{-\cos t}. f(t)=(1+k)+Cecost.

连续性条件和确定常数

t = 0 + t = 0^+ t=0+ f ( 0 + ) = ( 1 + k ) + C e − cos ⁡ 0 = ( 1 + k ) + C e − 1 f(0^+) = (1 + k) + C e^{-\cos 0} = (1 + k) + C e^{-1} f(0+)=(1+k)+Cecos0=(1+k)+Ce1。在 t = 0 − t = 0^- t=0 f ( 0 − ) = k f(0^-) = k f(0)=k。要求连续性:
( 1 + k ) + C e − 1 = k ⟹ 1 + C e = 0 ⟹ C = − e . (1 + k) + C e^{-1} = k \implies 1 + \frac{C}{e} = 0 \implies C = -e. (1+k)+Ce1=k1+eC=0C=e.
代入:
f ( t ) = ( 1 + k ) − e ⋅ e − cos ⁡ t = 1 + k − e 1 − cos ⁡ t . f(t) = (1 + k) - e \cdot e^{-\cos t} = 1 + k - e^{1 - \cos t}. f(t)=(1+k)eecost=1+ke1cost.
因此:
u ( 0 , t ) = f ( t ) − k = ( 1 + k − e 1 − cos ⁡ t ) − k = 1 − e 1 − cos ⁡ t . u(0, t) = f(t) - k = (1 + k - e^{1 - \cos t}) - k = 1 - e^{1 - \cos t}. u(0,t)=f(t)k=(1+ke1cost)k=1e1cost.
常数 k k k 被消除。

通解:

  • t − x < 0 t - x < 0 tx<0 u ( x , t ) = 0 u(x, t) = 0 u(x,t)=0
  • t − x > 0 t - x > 0 tx>0 u ( x , t ) = f ( t − x ) − k = ( 1 + k − e 1 − cos ⁡ ( t − x ) ) − k = 1 − e 1 − cos ⁡ ( t − x ) u(x, t) = f(t - x) - k = (1 + k - e^{1 - \cos (t - x)}) - k = 1 - e^{1 - \cos (t - x)} u(x,t)=f(tx)k=(1+ke1cos(tx))k=1e1cos(tx)

t = x t = x t=x 处,左极限和右极限均为 0,连续。

最终解

u ( x , t ) = { 0 , 0 < t ≤ x , 1 − e 1 − cos ⁡ ( t − x ) , t > x . u(x, t) = \begin{cases} 0, & 0 < t \leq x, \\ 1 - e^{1 - \cos (t - x)}, & t > x. \end{cases} u(x,t)={0,1e1cos(tx),0<tx,t>x.

验证

  1. 波动方程:在 t ≤ x t \leq x tx u = 0 u = 0 u=0,满足。在 t > x t > x t>x,令 ξ = t − x \xi = t - x ξ=tx
    u = 1 − e 1 − cos ⁡ ξ , u t = − e 1 − cos ⁡ ξ sin ⁡ ξ , u x = e 1 − cos ⁡ ξ sin ⁡ ξ . u = 1 - e^{1 - \cos \xi}, \quad u_t = -e^{1 - \cos \xi} \sin \xi, \quad u_x = e^{1 - \cos \xi} \sin \xi. u=1e1cosξ,ut=e1cosξsinξ,ux=e1cosξsinξ.
    二阶导数:
    u t t = − e 1 − cos ⁡ ξ ( sin ⁡ 2 ξ + cos ⁡ ξ ) , u x x = − e 1 − cos ⁡ ξ ( sin ⁡ 2 ξ + cos ⁡ ξ ) , u_{tt} = -e^{1 - \cos \xi} (\sin^2 \xi + \cos \xi), \quad u_{xx} = -e^{1 - \cos \xi} (\sin^2 \xi + \cos \xi), utt=e1cosξ(sin2ξ+cosξ),uxx=e1cosξ(sin2ξ+cosξ),
    u t t − u x x = 0. u_{tt} - u_{xx} = 0. uttuxx=0.

  2. 初始条件:当 t = 0 t = 0 t=0 x > 0 x > 0 x>0,则 t = 0 ≤ x t = 0 \leq x t=0x,所以 u = 0 u = 0 u=0。速度 u t = 0 u_t = 0 ut=0(因为在 t < x t < x t<x 区域 u ≡ 0 u \equiv 0 u0)。

  3. 边界条件:在 x = 0 x = 0 x=0 t > 0 t > 0 t>0,则 t > x t > x t>x
    u ( 0 , t ) = 1 − e 1 − cos ⁡ t , u x ( 0 , t ) = e 1 − cos ⁡ t sin ⁡ t . u(0, t) = 1 - e^{1 - \cos t}, \quad u_x(0, t) = e^{1 - \cos t} \sin t. u(0,t)=1e1cost,ux(0,t)=e1costsint.
    u x + sin ⁡ t ⋅ u = e 1 − cos ⁡ t sin ⁡ t + sin ⁡ t ( 1 − e 1 − cos ⁡ t ) = sin ⁡ t . u_x + \sin t \cdot u = e^{1 - \cos t} \sin t + \sin t (1 - e^{1 - \cos t}) = \sin t. ux+sintu=e1costsint+sint(1e1cost)=sint.
    满足。

解为:
u ( x , t ) = { 0 当  0 < t ≤ x 1 − e 1 − cos ⁡ ( t − x ) 当  t > x \boxed{u(x,t) = \begin{cases} 0 & \text{当 } 0 < t \leq x \\ 1 - \mathrm{e}^{1 - \cos (t - x)} & \text{当 } t > x \end{cases}} u(x,t)={01e1cos(tx) 0<tx t>x

http://www.xdnf.cn/news/14748.html

相关文章:

  • 王道链表大题算法(部分)
  • 【记录】Word|Word创建自动编号的多级列表标题样式
  • 每日一练:找到初始输入字符串 I
  • 企业级应用技术-ELK日志分析系统
  • 矩阵的秩 线性代数
  • 具身多模态大模型在感知与交互方面的综述
  • RabbitMQ简单消息监听
  • MongoDB 安装使用教程
  • 我认知的AI宇宙系列第三期
  • 视频讲解:门槛效应模型Threshold Effect分析数字金融指数与消费结构数据
  • 车载Tier1 supplier梳理
  • Instrct-GPT 强化学习奖励模型 Reward modeling 的训练过程原理实例化详解
  • C语言main函数的原理:程序入口的奥秘
  • 多路转接select
  • Linux云计算基础篇(2)
  • SpringCloud系列(42)--搭建SpringCloud Config分布式配置总控中心(服务端)
  • Deepoc 大模型在无人机行业应用效果的方法
  • java JNDI高版本绕过 工具介绍 自动化bypass
  • 信息安全工程师考试架构相关说明
  • Nordic空中升级OTA[NRF52832蓝牙OTA]
  • 力扣 hot100 Day30
  • Hadoop WordCount 程序实现与执行指南
  • Python 数据分析与机器学习入门 (三):Pandas 数据导入与核心操作
  • 提示技术系列——链式提示
  • 现代 JavaScript (ES6+) 入门到实战(四):数组的革命 map/filter/reduce - 告别 for 循环
  • stm32 USART串口协议与外设(程序)——江协教程踩坑经验分享
  • 第二届 Parloo杯 应急响应学习——畸形的爱
  • 理解 Confluent Schema Registry:Kafka 生态中的结构化数据守护者
  • Qt事件系统
  • 机器学习在智能电网中的应用:负荷预测与能源管理