统计随机行走的结构占比
有一个点在平面上移动,设r1,r2是0到1的两个随机数,这个点单次移动的距离是5*r1,移动的角度是360*r2,取整,走1万步,将相邻的4点放到一起,统计4点结构占比。
如某次随机得到10个点
1 | 2 | 2 | |
2 | 2 | 2 | |
3 | 2 | 4 | |
4 | 2 | 5 | |
5 | 2 | 3 | |
6 | 4 | 4 | |
7 | 4 | 4 | |
8 | 5 | 4 | |
9 | 2 | 2 | |
10 | 0 | 3 |
0 | 1 | 2 | 3 | 4 | 5 | |
0 | 10 | |||||
1 | ||||||
2 | 1--2--9 | 5 | 3 | 4 | ||
3 | ||||||
4 | 6--7 | |||||
5 | 8 |
其中1,2,9是重复的,6,7是重复的。所以1,2,3,4这个组合只有3个点,第一个合理的组合是2,3,4,5
0 | 1 | 2 | 3 | 4 | 5 | 0 | 1 | 2 | 3 | 4 | 5 | 0 | 1 | 2 | 3 | 4 | 5 | |||||||
0 | 0 | 0 | 10 | |||||||||||||||||||||
1 | 1 | 1 | ||||||||||||||||||||||
2 | 2 | 5 | 3 | 4 | 2 | 5 | 3 | 4 | 2 | 9 | ||||||||||||||
3 | 3 | 3 | ||||||||||||||||||||||
4 | 4 | 6 | 4 | 7 | ||||||||||||||||||||
5 | 5 | 5 | 8 |
只有3个合理的组合2,3,4,5;3,4,5,6和7,8,9,10分别是16,4,7.
随机1万次得到16个结构占比为
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
215 | 934 | 265 | 284 | 234 | 58 | 563 | 109 | 615 | 250 |
11 | 12 | 13 | 14 | 15 | 16 | ||||
266 | 34 | 227 | 204 | 132 | 47 |
再随机1万次,统计相邻5点的结构占比,得到
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
76 | 126 | 79 | 93 | 215 | 360 | 205 | 60 | 138 | 56 |
11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
41 | 20 | 164 | 74 | 22 | 99 | 47 | 166 | 39 | 89 |
21 | 22 | 23 | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
114 | 227 | 44 | 13 | 2 | 39 | 43 | 140 | 76 | 117 |
31 | 32 | 33 | 34 | ||||||
83 | 44 | 50 | 8 |
由结构加法,将5压缩为4
7(4a1+1)=2*5a1+5a2+5a3+5a4+2*5a12
24(4a2+1)=2*5a2+2*5a3+2*5a4+2*5a5+2*5a6+2*5a7+2*5a9+2*5a13+2*5a14+4*5a15+2*5a21
11(4a3+1)=5a1+5a7+2*5a8+3*5a10+2*5a12+2*5a14
11(4a4+1)=2*5a3+5a5+2*5a8+3*5a11+2*5a24+5a29
13(4a5+1)=5a1+5a7+5a10+2*5a17+4*5a19+2*5a20+2*5a27
7(4a6+1)=5a10+5a19+5*5a25
17(4a7+1)=2*5a2+5a6+5a7+5a9+3*5a20+2*5a22+3*5a28+4*5a31
6(4a8+1)=5a1+5a9+3*5a27+5a31
17(4a9+1)=5a5+5a6+5a13+3*5a16+3*5a18+2*5a21+2*5a22+4*5a30
13(4a10+1)=5a5+5a11+2*5a16+4*5a23+2*5a26+5a29+2*5a32
11(4a11+1)=5a4+5a8+5a9+5a13+3*5a17+5a22+3*5a26
3(4a12+1)=5a12+5a15+5a24
10(4a13+1)=5a6+2*5a18+2*5a28+5*5a33
7(4a14+1)=5a4+5a14+5a21+2*5a24+2*5a29
6(4a15+1)=5a13+5a29+5a30+3*5a32
7(4a16+1)=5a11+5a23+5*5a34
如4a1=(2*76+126+79+93+2*20)/7=70,得到
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
70 | 134.3 | 68.82 | 65.27 | 65.46 | 15 | 142.8 | 71 | 157.9 | 67.08 |
11 | 12 | 13 | 14 | 15 | 16 | ||||
85.45 | 18.33 | 122.2 | 65.57 | 81.5 | 17.86 |
两组数据归一化
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 |
0.048 | 0.211 | 0.06 | 0.064 | 0.053 | 0.013 | 0.127 | 0.025 | 0.139 | 0.056 | 0.06 | 0.008 | 0.051 | 0.046 | 0.03 | 0.011 |
0.056 | 0.108 | 0.055 | 0.052 | 0.052 | 0.012 | 0.114 | 0.057 | 0.127 | 0.054 | 0.068 | 0.015 | 0.098 | 0.053 | 0.065 | 0.014 |
两条曲线很一致,但又不完全重合,这个点的长期行为和短期行为有内在的一致性,但又不完全一致。
按现有计算用n+1计算n,n越大两条曲线符合程度越好。这个过程或许可以理解为用离散运动逼近连续运动,n越大,点数越多曲线越平滑。