当前位置: 首页 > news >正文

【C/C++】探索单例模式:线程安全与性能优化

文章目录

  • Singleton
    • 1 指针版本
      • Version 1 非线程安全版本
      • Version 2 加锁版本
      • Version 3.1 双重检查锁版本 Atomic+Mutex
      • Version 3.2 双重检查锁版本 Atomic-only
      • Version 3 两种方式对比
    • 2 引用版本
      • Version 1 简单版本 不推荐
      • Version 2 初始化安全版本
      • Version 3 初始化+操作安全版本
      • Explanation
      • Comparison

Singleton

1 指针版本

Version 1 非线程安全版本

class Logger {
public:static Logger *GetInstance() {if (instance == nullptr) {instance = new Logger();}return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:static Logger *instance;Logger() {}
};Logger *Logger::instance = nullptr;

Version 2 加锁版本

增加锁,用于保证线程安全,但是锁开销会影响性能。

class Logger {
public:static Logger *GetInstance() {std::lock_guard<std::mutex> lk(mutex_);if (instance == nullptr) {instance = new Logger();}return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:Logger() {}static Logger *instance;static std::mutex mutex_;
};Logger *Logger::instance = nullptr;
std::mutex Logger::mutex_;

Version 3.1 双重检查锁版本 Atomic+Mutex

class Logger {
public:static Logger* GetInstance() {// First, attempt to load the current instance atomicallyLogger* tmp = instance.load(std::memory_order_acquire);// If the instance is nullptr, create itif (tmp == nullptr) {std::lock_guard<std::mutex> lock(mtx);  // Lock only during initializationtmp = instance.load(std::memory_order_relaxed);  // Check again inside the lockif (tmp == nullptr) {tmp = new Logger();  // Create a new instanceinstance.store(tmp, std::memory_order_release);  // Atomically set the instance}}return tmp;}void Log(const std::string& message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}  // Private constructor to prevent direct instantiationstatic std::atomic<Logger*> instance;  // Atomic pointer to the Singleton instancestatic std::mutex mtx;  // Mutex to protect initialization
};// Initialize the atomic pointer and mutex
std::atomic<Logger*> Logger::instance(nullptr);
std::mutex Logger::mtx;

Version 3.2 双重检查锁版本 Atomic-only

class Logger {
public:static Logger* GetInstance() {// First, attempt to load the current instance atomicallyLogger* tmp = instance.load(std::memory_order_acquire);// If the instance is nullptr, create itif (tmp == nullptr) {tmp = new Logger();  // Create a new instance// Atomically set the instance if no other thread has done soif (!instance.compare_exchange_strong(tmp, tmp)) {delete tmp; // Another thread won the race, delete the temporary instancetmp = instance.load(std::memory_order_acquire); // Reload the instance}}return tmp;}void Log(const std::string& message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}  // Private constructor to prevent direct instantiationstatic std::atomic<Logger*> instance;  // Atomic pointer to the Singleton instance
};// Initialize the atomic pointer to nullptr
std::atomic<Logger*> Logger::instance(nullptr);

Version 3 两种方式对比

  • Only Atomic:

    • Atomic Check: We first check the instance atomically with instance.load. If it’s nullptr, we attempt to create the instance using new.
    • Atomic Set: We use compare_exchange_strong to ensure that only one thread creates the instance. If another thread has already created the instance, it returns the existing one.
    • No Mutex: There is no mutex involved here. The atomic operations ensure thread safety during the initialization phase.
  • Atomic + Mutex:

    • Atomic First Check: The first check of the instance pointer is atomic using instance.load.
    • Mutex Locking: If the instance is nullptr, we lock a mutex (std::mutex mtx) to synchronize access during the actual creation of the instance.
    • Double Check Inside Lock: After acquiring the mutex, we perform another check of the instance. This prevents other threads from creating multiple instances if they were waiting on the mutex.
    • Atomic Set: We use instance.store to atomically set the instance pointer once it’s initialized.

  • Comparison of Effectiveness:
FactorAtomic-onlyAtomic + Mutex
InitializationAtomic operations ensure safe initialization.Mutex ensures exclusive access during initialization.
Post-Initialization AccessLock-free after initialization.Mutex locking still required to access instance.
Performance (High Concurrency)High performance: No lock contention after init.Slower due to mutex locking, even after initialization.
Scalability (Concurrency)Highly scalable: No locks post-initialization.Less scalable: Mutex lock can cause contention.
Memory ConsistencyEnsured via atomic operations and memory_order_acquire/release.Ensured by std::mutex for synchronization.
SimplicitySlightly more complex due to atomic operations.Simpler for developers familiar with mutexes.
  • Atomic-only approach is more effective in high-concurrency environments, especially when you expect many threads accessing the Singleton. Since the initialization is thread-safe and lock-free after the instance is created, it scales much better than the mutex-based approach.

  • Atomic + Mutex approach might be easier to understand for developers familiar with mutexes and might work well in lower-concurrency environments. However, the mutex adds overhead for each access, and if the program has many threads, it will result in contention and slower performance.

  • If you are building a highly concurrent system, prefer the atomic-only approach, as it will perform better with minimal locking overhead.

  • If you have a simpler, lower-concurrency application, using atomic + mutex might be a good trade-off because it provides simplicity and guarantees correct initialization with easy-to-understand synchronization.

2 引用版本

Version 1 简单版本 不推荐

class Logger {
public:static Logger &GetInstance() {return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}private:static Logger instance;Logger() {}
};Logger Logger::instance;

Version 2 初始化安全版本

c++机制保证初始化安全

class Logger {
public:static Logger& GetInstance() {static Logger instance;return instance;}void Log(const std::string &message) {std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}
};

Version 3 初始化+操作安全版本

增加操作安全

class Logger {
public:static Logger &GetInstance() {static Logger instance;return instance;}void Log(const std::string &message) {std::lock_guard<std::mutex> lk(mtx);std::cout << message << std::endl;}Logger(const Logger&) = delete;Logger& operator=(const Logger&) = delete;private:Logger() {}std::mutex mtx;
};

Explanation

初始化过程线程安全原因:

  1. Static Local Variable:

    • In the GetInstance() method, we declare a static local variable instance.

      • static Logger instance; ensures that instance is only created once and persists for the entire lifetime of the program.
  2. First-Time Initialization:

    • The first time GetInstance() is called, the static variable instance is initialized. This is where the thread-safety comes into play. The C++11 standard guarantees that the initialization of a static local variable will be thread-safe.
    • If multiple threads try to call GetInstance() simultaneously, only one thread will initialize the instance. The other threads will wait until the initialization is complete, and then they will all see the same instance when they call GetInstance() again.
  3. Thread-Safe Static Initialization:

    • The C++11 guarantee ensures that even if multiple threads try to initialize the instance simultaneously, the static variable will only be initialized once. The other threads will see the already initialized object, which eliminates any race condition.
  4. Post-Initialization Access:

    • After initialization, the reference instance is ready for access, and since it is a static variable, it is always available. There is no locking required for accessing instance after it is initialized, making access very efficient.
  5. No Mutex or Atomic Operations:

    • Since the C++ standard guarantees thread-safe initialization of static local variables, there is no need for additional synchronization mechanisms such as mutexes or atomic operations. The instance is initialized only once, and once it is initialized, it is ready for fast, lock-free access.

Comparison

FactorAtomic-only SingletonAtomic + Mutex SingletonReference Singleton
Thread-Safe InitializationThread-safe initialization using atomic operations.Thread-safe initialization using atomic + mutex locking.Guaranteed thread-safe initialization due to static storage duration in C++11.
Memory ManagementRequires dynamic memory allocation (using new).Requires dynamic memory allocation (using new).No dynamic memory allocation; the instance is static.
Post-Initialization AccessLock-free after initialization, very fast.Mutex still required for each access.Lock-free after initialization, very fast.
Performance (High Concurrency)Very high performance due to lock-free access.Lower performance due to mutex lock overhead.Very high performance with no locking or atomic ops.
Scalability (Concurrency)Highly scalable with minimal contention.Less scalable due to mutex contention.Highly scalable since there’s no contention.
SimplicityMore complex, requires understanding of atomic operations.More complex due to mutex usage and atomic operations.Simpler and more straightforward.
Memory UsageRequires dynamic memory allocation for the Singleton.Requires dynamic memory allocation for the Singleton.No dynamic memory allocation, very efficient.
Lifetime ManagementRequires manual cleanup or reliance on smart pointers.Requires manual cleanup or reliance on smart pointers.Managed automatically by the compiler with static duration.
SafetyThread-safe, but requires careful handling of atomic ops.Thread-safe, but introduces locking overhead.Thread-safe due to the C++ static initialization guarantee, no locking needed.
Use CaseSuitable for high-concurrency, dynamic memory applications where you need to fine-tune memory allocation.Suitable for high-concurrency, but mutex introduces some overhead in high-load
http://www.xdnf.cn/news/563149.html

相关文章:

  • MySQL Host 被封锁解决方案(全版本适用 + Java 后端优化)
  • 制作跨平台AppImage包的方法
  • 基于STM32的智能台灯_自动亮度_久坐提醒仿真设计(Proteus仿真+程序设计+设计报告+讲解视频)
  • SQLMesh 宏操作符详解:@IF 的条件逻辑与高级应用
  • React---day1
  • asp.net web form nlog的安装
  • 9.PostgreSQL初体验
  • Flink SQL 计算实时指标同比的实现方法
  • vue3使用 Tailwind CSS (4.多版本)
  • UML 图的细分类别及其应用
  • virtualbox选项“启用套嵌vt-x/amd-v“不可用
  • 【论文阅读 | CVPR 2024 |RSDet:去除再选择:一种用于 RGB - 红外目标检测的由粗到精融合视角】
  • 论文篇-1.2.如何读好一篇论文
  • [实战]用户系统-1-基础功能完善
  • 笔记:NAT
  • 【笔记】排查并解决Error in LLM call after 3 attempts: (status code: 502)
  • 支持向量机(SVM):分类与回归的数学之美
  • 鸿蒙UI开发——Builder与LocalBuilder对比
  • 目标检测:YOLO 模型详解
  • 跨部门项目管理优化:告别邮件依赖
  • 提示词工程(Prompt Engineering)是智能Agent交互中不可或缺的一环
  • AI数字人一体机和智慧屏方案:开启智能交互新纪元
  • LeetCode 649. Dota2 参议院 java题解
  • 数独求解器3.0 增加latex格式读取
  • 攻防世界——Web题 fakebook
  • TypeScript 泛型讲解
  • Neo4j实现向量检索
  • 网速测试地址和工具
  • fluentd采集K8S日志
  • 鸿蒙进阶——驱动框架UHDF 机制核心源码解读(一)