2025.05.17淘天机考笔试真题第三题
📌 点击直达笔试专栏 👉《大厂笔试突围》
💻 春秋招笔试突围在线OJ 👉 笔试突围OJ
03. 奇偶平衡树分割问题
问题描述
K小姐是一位园林设计师,她设计了一个由多个花坛组成的树形公园。每个花坛中种植了不同数量的花,数量由整数表示。K小姐发现,当公园被分割成多个独立区域时,如果每个区域中的花朵总数都是偶数,游客会感到更加和谐。
现在,K小姐想要通过关闭若干条连接花坛的小路(即删除树的边),将公园分割成若干个独立区域(连通块),使得每个区域内的花朵总数都是偶数。
请你求出,对于每个 k ( 1 ≤ k ≤ n − 1 ) k (1 \leq k \leq n-1) k(1≤k≤n−1),关闭 k k k 条小路后得到的 k + 1 k+1 k+1 个独立区域满足条件的方案数。如果不存在满足条件的方案,对应的答案记为 0 0 0。
注意:两种关闭小路的方案若关闭的路径集合不同,则视为不同的方案。
输入格式
第一行给出一个整数 n n n,表示花坛的数量。
第二行给出 n n n 个整数 W 1 , W 2 , . . . , W n W_1, W_2, ..., W_n W1,W2,...,Wn,其中 W i W_i Wi 表示第 i i i 个花坛中的花朵数量。
接下来 n − 1 n-1 n−1 行,每行包含两个整数 u u u 与 v ( 1 ≤ u , v ≤ n , u ≠ v ) v (1 \leq u, v \leq n, u \neq v) v(1≤u,v≤n,u=v),表示花坛 u u u 与花坛 v v v 之间有一条小路,保证给定的图构成一棵树。
输出格式
输出 n − 1 n-1 n−1 个数,第 i i i 个数表示关闭 i i i 条小路后满足条件的方案数。由于答案可能非常大,请对答案取模 1 0 9 + 7 10^9+7 109+7 后输出。
样例输入
5
1 2 3 4 4
1 2
1 3
2 4
2 5
样例输出
3 3 1 0
样例 | 解释说明 |
---|---|
样例1 | 当 k = 1 k=1 k=1 时,关闭方案有 {(1,2)}, {(2,4)}, {(2,5)},共 3 种。 当 k = 2 k=2 k=2 时,关闭方案有 {(1,2), (2,4)}, {(1,2), (2,5)}, {(2,5), (2,4)},共 3 种。 当 k = 3 k=3 k=3 时,关闭方案有 {(1,2), (2,4), (2,5)},共 1 种。 当 k = 4 k=4 k=4 时,没有满足条件的方案。 |
数据范围
- 2 ≤ n ≤ 1 0 5 2 \leq n \leq 10^5 2≤n≤105
- 1 ≤ W i ≤ 1 0 9 1 \leq W_i \leq 10^9 1≤Wi≤109
- 1 ≤ u , v ≤ n 1 \leq u, v \leq n 1≤u,v≤n
题解
这道题乍看复杂,但仔细分析后会发现其中的数学规律和解决方案。
首先,我们需要理解什么情况下一个连通块的花朵数能够为偶数。显然,如果一个连通块内奇数花坛的个数为偶数,那么总花朵数一定是偶数(偶数+偶数=偶数,奇数+奇数=偶数)。
我们的目标是通过删除边,将树分成多个连通块,使得每个连通块内的奇数花坛数量都是偶数。那么问题转化为:找出那些删除后能让两侧奇数花坛数量都是偶数的边。
关键观察:一个连通块内奇数花坛数量为奇数时,无论如何分割,都无法使所有子连通块内的奇数花坛数量都为偶数。因为奇数个奇数,无论如何分组,总有一组含有奇数个奇数。
因此,如果整棵树中奇数花坛的总数为奇数,则无解。
接下来,我们定义一个边是"好边",如果删除这条边后,两个连通块内的奇数花坛数量都是偶数。一条边是好边当且仅当这条边连接的子树内奇数花坛数量为偶数。
如果好边数量为g,那么要删除k条边使所有连通块花朵数为偶数,就相当于从g条好边中选择k条,即组合数C(g,k)。
具体算法如下:
- 统计整棵树中奇数花坛的总数,如果为奇数,则无解。
- 通过DFS计算每个子树中奇数花坛的数量。
- 检查每条边,如果删除后两侧连通块中奇数花坛数量都是偶数,则该边为好边。
- 计算从g条好边中选k条的组合数C(g,k),即为答案。
时间复杂度分析:
- DFS遍历树的复杂度为O(n)
- 检查每条边的复杂度为O(n)
- 计算组合数的复杂度为O(n)
总体时间复杂度为O(n),空间复杂度为O(n)。
参考代码
- Python
import sys
input = lambda: sys.stdin.readline().strip()def solve():# 读取输入n = int(input())w = [0] + list(map(int, input().split()))adj = [[] for _ in range(n+1)]for _ in range(n-1):u, v = map(int, input().split())adj[u].append(v)adj[v].append(u)# 计算奇数花坛的总数odd_count = sum(1 for val in w[1:] if val % 2 == 1)# 如果奇数花坛总数为奇数,则无解if odd_count % 2 == 1:print(" ".join(["0"] * (n-1)))return# 计算子树中奇数花坛的数量t = [0] * (n+1)good_edges = 0# DFS计算子树信息def dfs(node, parent):nonlocal good_edgesis_odd = w[node] % 2 # 当前节点是否为奇数for child in adj[node]:if child != parent:# 递归计算子树dfs(child, node)# 更新当前节点的奇数计数is_odd ^= t[child]t[node] = is_odd# 检查是否为好边if parent != 0 and t[node] == 0:good_edges += 1# 从根节点开始DFSdfs(1, 0)# 计算组合数MOD = 10**9 + 7# 预计算阶乘和逆元fact = [1] * (n+1)inv_fact = [1] * (n+1)for i in range(1, n+1):fact[i] = (fact[i-1] * i) % MOD# 计算逆元(使用费马小定理)def pow_mod(x, p):res = 1while p > 0:if p & 1:res = (res * x) % MODx = (x * x) % MODp >>= 1return resinv_fact[n] = pow_mod(fact[n], MOD - 2)for i in range(n, 0, -1):inv_fact[i-1] = (inv_fact[i] * i) % MOD# 计算组合数C(n,k)def comb(n, k):if k < 0 or k > n:return 0return (fact[n] * inv_fact[k] % MOD * inv_fact[n-k] % MOD)# 计算并输出结果result = []for k in range(1, n):ans = comb(good_edges, k)result.append(str(ans))print(" ".join(result))if __name__ == "__main__":solve()
- Cpp
#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9 + 7;// 快速幂计算a^b mod MOD
ll pow_mod(ll a, ll b) {ll res = 1;while (b > 0) {if (b & 1) res = (res * a) % MOD;a = (a * a) % MOD;b >>= 1;}return res;
}int main() {ios::sync_with_stdio(false);cin.tie(nullptr);int n;cin >> n;// 读取花坛权值vector<int> w(n+1);for (int i = 1; i <= n; i++) cin >> w[i];// 构建树vector<vector<int>> adj(n+1);for (int i = 0; i < n-1; i++) {int u, v;cin >> u >> v;adj[u].push_back(v);adj[v].push_back(u);}// 计算奇数花坛总数int tot_odd = 0;for (int i = 1; i <= n; i++)tot_odd += (w[i] & 1);// 如果奇数总数为奇数,无解if (tot_odd & 1) {for (int k = 1; k <= n-1; k++)cout << "0" << (k == n-1 ? '\n' : ' ');return 0;}// 存储子树奇数数量vector<int> t(n+1, 0);int good = 0; // 好边数量// DFS计算子树信息vector<bool> vis(n+1, false);function<void(int, int)> dfs = [&](int u, int p) {int odd = w[u] & 1; // 当前节点是否为奇数for (int v : adj[u]) {if (v != p) {dfs(v, u);odd ^= t[v]; // 更新奇数计数}}t[u] = odd;// 检查是否为好边if (p != 0 && t[u] == 0)good++;};dfs(1, 0);// 预计算阶乘和逆元vector<ll> fact(n+1, 1), inv_fact(n+1, 1);for (int i = 1; i <= n; i++)fact[i] = (fact[i-1] * i) % MOD;inv_fact[n] = pow_mod(fact[n], MOD-2); // 费马小定理for (int i = n; i >= 1; i--)inv_fact[i-1] = (inv_fact[i] * i) % MOD;// 组合数计算函数auto comb = [&](int n, int k) -> ll {if (k < 0 || k > n) return 0;return (fact[n] * inv_fact[k] % MOD * inv_fact[n-k] % MOD);};// 输出结果for (int k = 1; k <= n-1; k++) {ll res = comb(good, k);cout << res << (k == n-1 ? '\n' : ' ');}return 0;
}
- Java
import java.io.*;
import java.util.*;public class Main {static final int MOD = (int)1e9 + 7;public static void main(String[] args) throws IOException {BufferedReader br = new BufferedReader(new InputStreamReader(System.in));// 读取花坛数量int n = Integer.parseInt(br.readLine().trim());// 读取每个花坛的花朵数String[] vals = br.readLine().trim().split(" ");int[] w = new int[n+1];for (int i = 1; i <= n; i++) {w[i] = Integer.parseInt(vals[i-1]);}// 构建树List<Integer>[] adj = new ArrayList[n+1];for (int i = 0; i <= n; i++) {adj[i] = new ArrayList<>();}for (int i = 0; i < n-1; i++) {String[] edge = br.readLine().trim().split(" ");int u = Integer.parseInt(edge[0]);int v = Integer.parseInt(edge[1]);adj[u].add(v);adj[v].add(u);}// 计算奇数花坛总数int oddCount = 0;for (int i = 1; i <= n; i++) {if (w[i] % 2 == 1) {oddCount++;}}// 如果奇数总数为奇数,无解if (oddCount % 2 == 1) {StringBuilder sb = new StringBuilder();for (int k = 1; k <= n-1; k++) {sb.append("0");if (k < n-1) sb.append(" ");}System.out.println(sb.toString());return;}// 存储子树奇数数量和好边数量int[] t = new int[n+1];int[] good = new int[1]; // 用数组便于在DFS中修改// DFS计算子树信息dfs(1, 0, w, adj, t, good);// 预计算阶乘和逆元long[] fact = new long[n+1];long[] invFact = new long[n+1];fact[0] = 1;for (int i = 1; i <= n; i++) {fact[i] = (fact[i-1] * i) % MOD;}invFact[n] = powMod(fact[n], MOD-2);for (int i = n; i > 0; i--) {invFact[i-1] = (invFact[i] * i) % MOD;}// 输出结果StringBuilder result = new StringBuilder();for (int k = 1; k <= n-1; k++) {long ans = combination(good[0], k, fact, invFact);result.append(ans);if (k < n-1) result.append(" ");}System.out.println(result.toString());}// DFS计算子树信息static void dfs(int node, int parent, int[] w, List<Integer>[] adj, int[] t, int[] good) {int isOdd = w[node] % 2; // 当前节点是否为奇数for (int child : adj[node]) {if (child != parent) {dfs(child, node, w, adj, t, good);isOdd ^= t[child]; // 更新奇数计数}}t[node] = isOdd;// 检查是否为好边if (parent != 0 && t[node] == 0) {good[0]++;}}// 快速幂计算static long powMod(long a, int b) {long res = 1;while (b > 0) {if ((b & 1) == 1) res = (res * a) % MOD;a = (a * a) % MOD;b >>= 1;}return res;}// 计算组合数C(n,k)static long combination(int n, int k, long[] fact, long[] invFact) {if (k < 0 || k > n) return 0;return (fact[n] * invFact[k] % MOD * invFact[n-k] % MOD);}
}