基于CNN-BiLSTM-Attention的回归预测模型!
往期精彩内容:
单步预测-风速预测模型代码全家桶-CSDN博客
半天入门!锂电池剩余寿命预测(Python)-CSDN博客
超强预测模型:二次分解-组合预测-CSDN博客
VMD + CEEMDAN 二次分解,BiLSTM-Attention预测模型-CSDN博客
超强预测算法:XGBoost预测模型-CSDN博客
基于麻雀优化算法SSA的预测模型——代码全家桶-CSDN博客
VMD + CEEMDAN 二次分解,CNN-Transformer预测模型-CSDN博客
独家原创 | SCI 1区 高创新预测模型!-CSDN博客
风速预测(八)VMD-CNN-Transformer预测模型-CSDN博客
高创新 | CEEMDAN + SSA-TCN-BiLSTM-Attention预测模型-CSDN博客
VMD + CEEMDAN 二次分解,Transformer-BiGRU预测模型-CSDN博客
独家原创 | 基于TCN-SENet +BiGRU-GlobalAttention并行预测模型-CSDN博客
VMD + CEEMDAN 二次分解——创新预测模型合集-CSDN博客
独家原创 | BiTCN-BiGRU-CrossAttention融合时空特征的高创新预测模型-CSDN博客
CEEMDAN +组合预测模型(CNN-Transfromer + XGBoost)-CSDN博客
时空特征融合的BiTCN-Transformer并行预测模型-CSDN博客
独家首发 | 基于多级注意力机制的并行预测模型-CSDN博客
独家原创 | CEEMDAN-CNN-GRU-GlobalAttention + XGBoost组合预测-CSDN博客
多步预测系列 | LSTM、CNN、Transformer、TCN、串行、并行模型集合-CSDN博客
独家原创 | CEEMDAN-Transformer-BiLSTM并行 + XGBoost组合预测-CSDN博客
涨点创新 | 基于 Informer-LSTM的并行预测模型-CSDN博客
独家原创 | 基于 Informer + TCN-SENet的并行预测模型-CSDN博客
即插即用 | 时间编码+LSTM+全局注意力-CSDN博客
粉丝福利 | 再添 Seq2Seq 多步预测模型-CSDN博客
暴力涨点! | 基于 Informer+BiGRU-GlobalAttention的并行预测模型-CSDN博客
热点创新 | 基于 KANConv-GRU并行的多步预测模型-CSDN博客
重大更新!锂电池剩余寿命预测新增 CALCE 数据集_calce数据集-CSDN博客
基于 VMD滚动分解+Transformer-GRU并行的锂电池剩余寿命预测模型
Informer 预测模型合集:新增特征重要性分析!_informer模型 最小二乘 气体 浓度 监测-CSDN博客
快速傅里叶变换暴力涨点!基于时频特征融合的高创新时间序列分类模型-CSDN博客
前言
本文基于 Kaggle平台—洪水数据集的回归预测(文末附数据集),更新CNN、LSTM、LSTM-Attention、Transformer-BiLSTM、CNN-BiLSTM-Attention等模型的可视化分析!
1 更新介绍(新增可视化代码)
1.1 新增可视化对比
(1)柱状图对比:
(2)雷达图可视化对比:
(3)预测拟合对比:
注意:本次更新可视化模型继续加入基于 Python 的回归预测模型合集中,之前购买的同学请及时更新下载!(性价比极高)
1.2 模型简介
● 数据集:Kaggle平台—洪水数据集
● 环境框架:python 3.9 pytorch 2.1 及其以上版本均可运行
● 使用对象:入门学习,论文需求者
● 代码保证:代码注释详细、即拿即可跑通。
● 配套文件:详细的环境配置安装教程,模型、参数讲解文档
包括完整流程数据代码处理:
回归预测数据集制作、数据加载、模型定义、参数设置、模型训练、模型测试、预测可视化、模型评估
全网最低价,入门回归预测最佳教程,高性价比、高质量代码,大家可以了解一下:(所有全家桶模型会不断加入新的模型进行更新!后续会逐渐提高价格,越早购买性价比越高!!!)一次购买,享受永久免费更新福利!
2 数据预处理
数据集格式为CSV文件,共50000个样本,20个特征,来预测FloodProbability(洪水概率): 该结果变量基于上述因素预测洪水的可能性,可能表示为0到1之间的概率。
按照7:2:1划分训练集、验证集、测试集:
3 基于CNN-BiLSTM-Attention的回归模型
3.1 定义CNN-BiLSTM-Attention网络模型
3.2 设置参数,训练模型
50个epoch,mse极低,CNN-BiLSTM-Attention网络效果显著,模型能够充分提取数据的多尺度特征,收敛速度快,性能特别优越,效果明显。
4 模型评估与可视化
4.1 模型评估
4.2 回归预测拟合
5 代码、数据整理如下:
点击下方卡片获取代码!