智能风险评估与欺诈检测系统
实时或准实时分析交易、申请、理赔等业务事件,利用大模型强大的模式识别和上下文理解能力,识别传统规则引擎可能遗漏的复杂、新型欺诈模式,并进行风险评估,为决策提供智能依据。
架构设计
- 事件采集服务 (Event Ingestion Service):通过API接收各种风险事件(交易、开户申请、理赔申请等)。
- 数据增强服务 (Data Enrichment Service):查询内部数据库(用户画像、历史行为)和外部数据源(黑名单、信用分)来丰富事件上下文。
- AI风险评估服务 (AI Risk Assessment Service):核心服务,调用大模型API对 enriched event进行深度分析。
- 决策引擎 (Decision Engine):综合AI分析结果和传统规则(如:金额阈值、地域规则)做出最终决策(通过、拒绝、人工审核)。
- 告警与工作流服务 (Alert & Workflow Service):触发告警、通知人工审核员,并集成到工单系统中。
- 流处理平台 (Stream Processing Platform, e.g. Kafka):作为整个系统的中枢神经,连接各个服务。
- 向量数据库 (Vector Database):存储历史欺诈案例、异常模式的特征向量,用于RAG增强。
数据流:风险事件 -> Kafka -> 数据增强服务 -> Kafka -> AI风险评估服务 (调用LLM API + 向量检索) -> 决策引擎 -> Kafka -> 告警/工单服务
技术栈
- Java框架: Spring Boot + Spring Cloud Stream (与Kafka集成) + Spring AI (或LangChain4j)
- 流处理平台: Apache Kafka
- 大模型API: OpenAI GPT-4 / Anthropic Claude (长文本能力强) 或 Azure OpenAI (企业级)
- 向量数据库: Redis Stack (RedisSearch) 或 Milvus / Qdrant
- 传统数据库: PostgreSQL (存储事件、分析结果、决策记录)
- 缓存: Redis (用于数据增强的缓存)
- 监控: Micrometer + Prometheus + Grafana
一、环境搭建
- Spring Web (用于API)
- Spring Cloud Stream (与Kafka绑定器 spring-cloud-stream-binder-kafka)
- Spring Data JPA (连接PostgreSQL)
- Spring AI 或 LangChain4j (强烈推荐,生态更成熟)
<!-- LangChain4j for OpenAI -->
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-open-ai</artifactId><version>0.28.0</version>
</dependency>
<!-- LangChain4j for Qdrant -->
<dependency><groupId>dev.langchain4j</groupId><artifactId>langchain4j-qdrant</artifactId><version>0.28.0</version>
</dependency>
微服务模块:
ingestion-service-----事件采集
enrichment-service------实现数据增强服务
ai-risk-service
decision-service
二、核心数据模型
// 通用风险事件基类 (可根据具体事件类型如Transaction, Application等继承)
@Entity
@Inheritance(strategy = InheritanceType.JOINED)
public class RiskEvent {@Idprivate String eventId; // UUID//交易 新账户 索赔private String eventType; // e.g., "TRANSACTION", "NEW_ACCOUNT", "CLAIM"private LocalDateTime timestamp;private String userId;//待定 处理中 批准 拒绝 手动审查private String status; // "PENDING", "PROCESSING", "APPROVED", "REJECTED", "MANUAL_REVIEW"// ... getters and setters
}/**交易数据类型
*/
@Entity
public class TransactionEvent extends RiskEvent {private BigDecimal amount;private String currency;private String merchantName;private String merchantCategory;private String transactionLocation;private String deviceId;// ... 其他交易相关字段
}/**风险评估
*/
@Entity
public class RiskAssessment {@Idprivate String assessmentId;private String eventId;//风险等级private String riskLevel; // "LOW", "MEDIUM", "HIGH", "CRITICAL"private Double riskScore; // 0.0 - 1.0//欺诈类型private String fraudType; // e.g., "IDENTITY_THEFT", "PAYMENT_FRAUD", "ACCOUNT_TAKEOVER", "NONE"private Boolean recommendedReview; // true/false@Column(columnDefinition = "TEXT")private String reasoning; // LLM的推理分析,至关重要private String supportingEvidence; // 从RAG检索到的相似案例IDprivate LocalDateTime assessedAt;// ... getters and setters
}
三、实现事件采集与Kafka集成
①、定义Kafka Topic
spring:cloud:stream:bindings:riskEvents-out-0:destination: risk-eventsriskEvents-in-0:destination: risk-eventsenrichedEvents-out-0:destination: enriched-risk-eventsenrichedEvents-in-0:destination: enriched-risk-eventsassessments-out-0:destination: risk-assessmentskafka:binder:brokers: localhost:9092
②、事件采集API(ingestion-service)
@RestController
@RequestMapping("/api/events")
public class RiskEventController {private final StreamBridge streamBridge; // Spring Cloud Stream 用于发送消息public RiskEventController(StreamBridge streamBridge) {this.streamBridge = streamBridge;}@PostMapping("/transaction")public ResponseEntity<String> createTransactionEvent(@RequestBody TransactionEvent event) {event.setEventId(UUID.randomUUID().toString());event.setStatus("PENDING");event.setTimestamp(LocalDateTime.now());// 发送到Kafka TopicstreamBridge.send("riskEvents-out-0", event);return ResponseEntity.accepted().body("Event received for processing: " + event.getEventId());}
}
四、实现数据增强服务 (enrichment-service)
@Service
public class DataEnrichmentService {@Autowiredprivate UserProfileRepository userProfileRepository;@Autowiredprivate BlacklistService blacklistService;@Beanpublic Consumer<TransactionEvent> enrichEvent() {return event -> {// 1. 查询用户行为基线(最近登录IP、常用设备、交易时间习惯)UserProfile userProfile = userProfileRepository.findByUserId(event.getUserId());event.setUserRecentIp(userProfile.getLastLoginIp());event.setUserUsualDevice(userProfile.getCommonDeviceId());// ... 设置其他画像数据// 2. 查询外部黑名单(商户、IP、设备)boolean isMerchantBlacklisted = blacklistService.isMerchantBlacklisted(event.getMerchantName());boolean isDeviceSuspicious = blacklistService.isDeviceSuspicious(event.getDeviceId());event.setMerchantBlacklisted(isMerchantBlacklisted);event.setDeviceSuspicious(isDeviceSuspicious);// 3. 计算简单特征(例如:此次金额是否远高于历史平均)BigDecimal avgAmount = userProfile.getAvgTransactionAmount();boolean isAmountAnomalous = event.getAmount().compareTo(avgAmount.multiply(new BigDecimal("3"))) > 0;event.setAmountAnomalous(isAmountAnomalous);// 发布 enriched eventstreamBridge.send("enrichedEvents-out-0", event);};}
}
五、构建核心——AI风险评估服务 (ai-risk-service)
①、初始化LLM和向量数据库客户端
- OpenAiChatModel ----OpenAiChatModel聊天模型
- OpenAiEmbeddingModel----EmbeddingModel文本嵌入模型,用于将文本转换为向量
- QdrantEmbeddingStore----EmbeddingStore向量数据库链接到本地Qdrant服务
@Configuration
public class AiConfig {@Value("${openai.api.key}")private String openAiApiKey;@BeanOpenAiChatModel openAiChatModel() {return OpenAiChatModel.builder().apiKey(openAiApiKey).modelName("gpt-4-turbo-preview") // 使用长上下文模型.temperature(0.1) // 低随机性,保证分析稳定.maxRetries(2)//最大重试次数.build();}@BeanEmbeddingModel embeddingModel() {return OpenAiEmbeddingModel.builder()//创建文本嵌入模型.apiKey(openAiApiKey).modelName("text-embedding-3-small").build(); //用于将文本转换为向量}@BeanEmbeddingStore<TextSegment> embeddingStore() {//TextSegment 表明存储的是文本片段及其对应的向量// 连接Qdrant向量数据库QdrantEmbeddingStore store = QdrantEmbeddingStore.builder().host("localhost").port(6334).collectionName("fraud_cases")//使用名为 "fraud_cases" 的集合(用于存储欺诈案例的向量数据).build();return store;}
}
②、实现RAG检索器
@Service
public class FraudCaseRetriever {private final EmbeddingStore<TextSegment> embeddingStore;private final EmbeddingModel embeddingModel;public FraudCaseRetriever(EmbeddingStore<TextSegment> embeddingStore, EmbeddingModel embeddingModel) {this.embeddingStore = embeddingStore;this.embeddingModel = embeddingModel;}public String retrieveRelevantCases(TransactionEvent event) {// 将事件关键信息转换为查询文本String queryText = String.format("Transaction: %s at %s for %s %s. User: %s. Device: %s. Location: %s",event.getAmount(), event.getMerchantName(), event.getCurrency(),event.getMerchantCategory(), event.getUserId(), event.getDeviceId(),event.getTransactionLocation());// 生成查询向量Embedding queryEmbedding = embeddingModel.embed(queryText).content();// 在向量数据库中搜索最相似的10个历史欺诈案例int maxResults = 10;double minScore = 0.7; // 相似度阈值List<EmbeddingMatch<TextSegment>> relevantMatches = embeddingStore.findRelevant(queryEmbedding, maxResults, minScore);// 构建给LLM的上下文StringBuilder contextBuilder = new StringBuilder("## Relevant Historical Fraud Cases:\n");for (EmbeddingMatch<TextSegment> match : relevantMatches) {contextBuilder.append(" - ").append(match.embedded().text()).append(" (Similarity: ").append(String.format("%.2f", match.score())).append(")\n");}return contextBuilder.toString();}
}
③、实现风险评估服务
@Service
public class AiRiskAssessmentService {private final OpenAiChatModel chatModel;private final FraudCaseRetriever fraudCaseRetriever;//欺诈检索器public AiRiskAssessmentService(OpenAiChatModel chatModel, FraudCaseRetriever fraudCaseRetriever) {this.chatModel = chatModel;this.fraudCaseRetriever = fraudCaseRetriever;}@Beanpublic Consumer<TransactionEvent> assessRisk() {return event -> {// 1. 检索相似案例String relevantCasesContext = fraudCaseRetriever.retrieveRelevantCases(event);// 2. 构建结构化PromptString prompt = """你是一名高级金融风控专家。请基于以下交易信息和相关历史案例,进行风险评估。## 待评估交易信息:%s%s // 这里注入检索到的相关案例上下文## 你的任务:1. **风险评估**:给出风险等级("LOW", "MEDIUM", "HIGH", "CRITICAL")和一个0.0(无风险)到1.0(确定欺诈)之间的风险分数。2. **欺诈类型判断**:如果风险高,判断最可能的欺诈类型("IDENTITY_THEFT", "PAYMENT_FRAUD", "ACCOUNT_TAKEOVER", "MERCHANT_FRAUD", "NONE")。3. **决策建议**:建议是否需要人工审核(true/false)。4. **推理分析**:详细解释你的推理,特别是与提供的历史案例的相似或不同之处。请严格按以下JSON格式输出,不要有任何其他文字:{"riskLevel": "风险等级","riskScore": 0.5,"fraudType": "欺诈类型","recommendedReview": true,"reasoning": "你的详细推理..."}""".formatted(event.toString(), relevantCasesContext);// 3. 调用LLMString aiResponse = chatModel.generate(prompt);// 4. 解析响应并保存结果RiskAssessment assessment = parseAiResponse(aiResponse);assessment.setEventId(event.getEventId());assessment.setAssessedAt(LocalDateTime.now());// ... 保存到数据库// 5. 将评估结果发送到决策TopicstreamBridge.send("assessments-out-0", assessment);};}// ... parseAiResponse 方法(同上一个项目,使用Jackson解析JSON)
}
六、实现决策引擎 (decision-service)
@Service
public class DecisionEngineService {private final RuleEngine ruleEngine; // 可以集成Drools等规则引擎@Beanpublic Consumer<RiskAssessment> makeDecision() {return assessment -> {String finalDecision;// 1. 综合AI建议和硬性规则if ("CRITICAL".equals(assessment.getRiskLevel()) || assessment.getRiskScore() > 0.9) {finalDecision = "REJECT";} else if (assessment.getRecommendedReview() || assessment.getRiskScore() > 0.7) {finalDecision = "MANUAL_REVIEW";} else if (assessment.getRiskScore() > 0.4) {// 可以触发附加验证(如短信验证码)finalDecision = "REQUIRE_2FA";} else {finalDecision = "APPROVE";}// 2. 更新事件状态// 3. 如果决策是MANUAL_REVIEW,触发告警和工作流创建if ("MANUAL_REVIEW".equals(finalDecision)) {streamBridge.send("alerts-out-0", createAlert(assessment));}};}
}