当前位置: 首页 > news >正文

Linux--->网络编程(TCP并发服务器构建:[ 多进程、多线程、select ])

TCP并发服务器构建

一、服务器

    单循环服务器:服务端同一时刻只能处理一个客户端的任务(TCP)
并发服务器:服务端同一时刻可以处理多个客户端的任务(UDP)

二、TCP服务端并发模型

1、多进程

     进程资源开销大,安全性高。

     以下是一个实现多进程TCP服务端代码:

#define SER_PORT 62300
#define SER_IP "192.168.0.165"int init_tcp_ser()
{int sockfd = socket(AF_INET, SOCK_STREAM, 0);if(sockfd < 0){perror("socket error");return 0;}struct sockaddr_in seraddr;seraddr.sin_family = AF_INET;seraddr.sin_port = htons(SER_PORT);seraddr.sin_addr.s_addr = inet_addr(SER_IP);int ret = bind(sockfd, (struct sockaddr *)&seraddr, sizeof(seraddr));if(ret < 0){printf("bind error");return -1;}int cnt = listen(sockfd, 100);if(cnt < 0){perror("listen error");return -1;}return sockfd;
}void wait_handler(int signo)
{wait(NULL);
}int main(int argc, char *argv[])
{signal(SIGCHLD, wait_handler);struct sockaddr_in cliaddr;socklen_t clilen = sizeof(cliaddr);int sockfd = init_tcp_ser();if(sockfd < 0){perror("init_tcp_ser error");return -1;}while(1){int connfd = accept(sockfd, (struct sockaddr *)&cliaddr, &clilen); if(connfd < 0){perror("accept error");return -1;}pid_t pid = fork();if(pid > 0){}else if(pid == 0){char buff[1024] = {0};while(1){memset(buff, 0, sizeof(buff));ssize_t ret = recv(connfd, buff, sizeof(buff), 0);if(ret < 0){perror("send error");return -1;}else if(ret == 0){printf("[%s : %d]: offline!\n", inet_ntoa(cliaddr.sin_addr), ntohs(cliaddr.sin_port));break;}printf("[%s : %d]: %s\n", inet_ntoa(cliaddr.sin_addr), ntohs(cliaddr.sin_port), buff);strcat(buff, "----OK");ssize_t cnt = send(connfd, buff, strlen(buff), 0);if(cnt < 0){perror("send error");break;}}   close(connfd);}}close(sockfd);return 0;
}

2、多线程

     线程相对与进程资源开销小,相同资源环境下,并发量比进程大。

     以下是一个实现多线程TCP服务端代码:

#include "head.h"#define SER_PORT 62300
#define SER_IP "192.168.0.165"int init_tcp_ser()
{int sockfd = socket(AF_INET, SOCK_STREAM, 0);if(sockfd < 0){perror("socket error");return 0;}//允许绑定处于TIME_WAIT状态的地址,避免端口占用问题:int optval = 1;setsockopt(sockfd, SOL_SOCKET, SO_REUSEADDR, &optval, sizeof(optval));struct sockaddr_in seraddr;seraddr.sin_family = AF_INET;seraddr.sin_port = htons(SER_PORT);seraddr.sin_addr.s_addr = inet_addr(SER_IP);int ret = bind(sockfd, (struct sockaddr *)&seraddr, sizeof(seraddr));if(ret < 0){printf("bind error");return -1;}int cnt = listen(sockfd, 100);if(cnt < 0){perror("listen error");return -1;}return sockfd;
}void *task(void *sug)
{int connfd = *(int *)sug;char buff[1024] = {0};while(1){memset(buff, 0, sizeof(buff));ssize_t ret = recv(connfd, buff, sizeof(buff), 0);if(ret < 0){perror("send error");break;}else if(ret == 0){printf("[%s : %d]: offline!\n", inet_ntoa(cliaddr.sin_addr), ntohs(cliaddr.sin_port));break;}printf("[%s : %d]: %s\n", inet_ntoa(cliaddr.sin_addr), ntohs(cliaddr.sin_port), buff);strcat(buff, "----OK");ssize_t cnt = send(connfd, buff, strlen(buff), 0);if(cnt < 0){perror("send error");break;}}   close(connfd);
}int main(int argc, char *argv[])
{struct sockaddr_in cliaddr;socklen_t clilen = sizeof(cliaddr);int sockfd = init_tcp_ser();if(sockfd < 0){perror("init_tcp_ser error");return -1;}while(1){int connfd = accept(sockfd, (struct sockaddr *)&cliaddr, &clilen); if(connfd < 0){perror("accept error");return -1;}pthread_t tid;int fd = pthread_create(&tid, NULL, task, &connfd);if(fd < 0){perror("thread create error");return -1;}  pthread_detach(tid);}close(sockfd);return 0;
}

3、线程池

     为了解决多线程或者多进程模型,在服务器运行过程,频繁创建和销毁线程(进程)带来的时间消耗问题。
基于生产者和消费者编程模型,以及任务队列等,实现的一套多线程框架。

4.  IO多路复用

    1)概念

     对多个文件描述符的读写可以复用一个进程。
在不创建新的进程和线程的前提下,使用一个进程实现对多个文件读写的同时监测。
阻塞IO模式:

    2)方式

        实现方式有 select、poll、epoll 三种。

5、select 实现IO多路复用

    1)实现步骤

    (1)创建文件描述符集合     fd_set
(2)添加关注的文件描述符到集合     FD_SET
(3)使用 select 传递集合表给内核,内核开始监测事件    select()
(4)当内核监测到事件时,应用层select将解除阻塞,并获得相关的事件结果
(5)根据 select 返回的结果做不同的任务处理

    2)select 的宏

        将集合清0:void FD_ZERO(fd_set *set);
向集合中添加文件描述符:void FD_SET(int fd, fd_set *set);
从集合中移除文件描述符:void FD_CLR(int fd, fd_set *set);
检查文件描述符是否在集合中:int  FD_ISSET(int fd, fd_set *set);

    3)select() 函数接口

 int select(int nfds, fd_set *readfds, fd_set *writefds,
fd_set *exceptfds, struct timeval *timeout);

功能:传递文件描述符结合表给内核并等待获取事件结果
参数:
nfds : 关注的最大文件描述符+1
readfds:读事件的文件描述符集合
writefds:写事件的文件描述符集合
exceptfds:其他事件的文件描述符集合
timeout:设置select监测时的超时时间
若为NULL : 不设置超时时间(select一直阻塞等待)

返回值:
成功:返回内核监测的到达事件的个数
失败:-1
0 : 超时时间到达,但没有事件发生,则返回0

    4)应用示例

        (1)通过select函数构建多路复用,实现管道和终端的读

        管道向服务端写的代码:

int main(void)
{mkfifo("./myfifo", 0664);int fd = open("./myfifo", O_WRONLY);if(fd < 0){perror("open error");return -1;}while(1){write(fd, "hello world", 11);sleep(1);}close(fd);return 0;
}

        读的代码:

int main(void)
{char buff[1024] = {0};mkfifo("./myfifo", 0664);int fifofd = open("./myfifo", O_RDONLY);if(fifofd < 0){perror("open error");return -1;}//1、创建文件描述符集合fd_set rdfds;fd_set rdfdstmp;//2、清空文件描述符集合表FD_ZERO(&rdfds);//初始化...集//3、添加关注的文件描述符到集合中FD_SET(0, &rdfds);//添加int maxfd = 0;FD_SET(fifofd, &rdfds);maxfd = maxfd > fifofd ? maxfd : fifofd;while(1){rdfdstmp = rdfds;//4、传递集合表给内核并等待返回到达事件的结果int cnt = select(maxfd+1, &rdfdstmp, NULL, NULL, NULL);if(cnt < 0){perror("select error");return -1;}if(FD_ISSET(0, &rdfdstmp))//检查文件描述符0是否在集合中{fgets(buff, sizeof(buff), stdin);//0printf("STDIN: %s\n", buff);}if(FD_ISSET(fifofd, &rdfdstmp)){memset(buff, 0, sizeof(buff));read(fifofd, buff, sizeof(buff));printf("FIFO: %s\n", buff);}}close(fifofd);return 0;
}

        (2)使用select实现TCP服务端IO多路复用代码

#define SER_PORT  50000
#define SER_IP    "192.168.0.165"int init_tcp_ser()
{int sockfd = socket(AF_INET, SOCK_STREAM, 0);if (sockfd < 0){perror("socket error");return -1;}struct sockaddr_in seraddr;seraddr.sin_family = AF_INET;seraddr.sin_port = htons(SER_PORT);seraddr.sin_addr.s_addr = inet_addr(SER_IP);int ret = bind(sockfd, (struct sockaddr *)&seraddr, sizeof(seraddr));if (ret < 0){perror("bind error");return -1;}ret = listen(sockfd, 100);if (ret < 0){perror("listen error");return -1;}return sockfd;
}int main(int argc, const char *argv[])
{char buff[1024] = {0};struct sockaddr_in cliaddr;socklen_t clilen = sizeof(cliaddr);int sockfd = init_tcp_ser();if (sockfd < 0){return -1;}//1. 创建文件描述符集合fd_set rdfds;fd_set rdfdstmp;FD_ZERO(&rdfds);//2. 添加关注的文件描述符到集合FD_SET(sockfd, &rdfds);int maxfd = sockfd;while (1){rdfdstmp = rdfds;//3. 传递集合到内核,并等待返回监测结果int cnt = select(maxfd+1, &rdfdstmp, NULL, NULL, NULL);if (cnt < 0){perror("select error");return -1;}//4. 是否有监听套接字事件到达 ----》三次握手已完成,可以acceptif (FD_ISSET(sockfd, &rdfdstmp)){int connfd = accept(sockfd, (struct sockaddr *)&cliaddr, &clilen);if (connfd < 0){perror("accept error");return -1;}FD_SET(connfd, &rdfds);maxfd = maxfd > connfd ? maxfd : connfd;}//5. 是否有通讯套接字事件到达for (int i = sockfd+1; i <= maxfd; i++){if (FD_ISSET(i, &rdfdstmp)){memset(buff, 0, sizeof(buff));ssize_t cnt = recv(i, buff, sizeof(buff), 0);if (cnt < 0){perror("recv error");FD_CLR(i, &rdfds);close(i);continue;}else if (0 == cnt){FD_CLR(i, &rdfds);close(i);continue;}printf("%s\n", buff);strcat(buff, "--->ok");cnt = send(i, buff, strlen(buff), 0);if (cnt < 0){perror("send error");FD_CLR(i, &rdfds);close(i);continue;}}}	}close(sockfd);return 0;
}

【END】

http://www.xdnf.cn/news/1377811.html

相关文章:

  • Linux 系统调优与CPU-IO-网络内核参数调优
  • MySQL InnoDB vs MyISAM
  • 深度学习——卷积神经网络CNN(原理:基本结构流程、卷积层、池化层、全连接层等)
  • LeetCode - 反转链表 / K 个一组翻转链表
  • day2_softmax回归的实现 李沐动手学深度学习pytorch记录
  • 神经网络学习笔记12——高效卷积神经网络架构MobileNet
  • PLC_博图系列☞基本指令”S_ODT:分配接通延时定时器参数并启动“
  • leecode-三数之和
  • 如何防御安全标识符 (SID) 历史记录注入
  • 【Linux实时内核机制】ww_rt_mutex 的contending_lock异常问题
  • wireshark解析FLV插件分享
  • Unity Shader unity文档学习笔记(二十一):几种草体的实现方式(透明度剔除,GPU Instaning, 曲面细分+几何着色器实现)
  • HTML5超详细学习内容
  • GPIO推挽和开漏的名称由来和本质含义
  • FactoryBean接口作用
  • 使用Stone 3D快速制作第一人称视角在线小游戏
  • 【PyTorch】基于YOLO的多目标检测项目(二)
  • 基于Cursor AI IDE的Vue3留言板系统实战:从零搭建到智能优化全流程
  • 《金融对账系统雪崩隐患的深度复盘与架构重生》
  • 从CTFshow-pwn入门-pwn40理解64位栈溢出不都需要堆栈平衡
  • 致远OA新闻公告讨论调查信息查询SQL
  • Linux操作系统——TCP服务端并发模型
  • 域名、ip、DSN、URL
  • 虚拟机逃逸攻防演练
  • 装饰器模式(C++python)
  • 如何提升素材检索效率?语义搜索在 DAM 中的应用效果全解
  • 广东省省考备考(第八十八天8.27)——判断推理(听课后强化训练)
  • 基于NXP iMXRT600音频算法开发方法
  • 【ros-humble】【虚拟机】网络配置
  • 【leetcode】105. 从前序与中序遍历序列构造二叉树