当前位置: 首页 > news >正文

Advanced Math Math Analysis |02 Limits

Advanced Math & Math Analysis |02 Limits ⭐


《世界赠予我的》

Let {xk}\{x_k\}{xk} be a sequence of points in Rn\mathbb{R}^nRn. We say that {xk}\{x_k\}{xk} converges to xxx if for every ε>0\varepsilon > 0ε>0, there exists a positive integer N≥1N \geq 1N1 such that for all k≥Nk \geq NkN, the inequality ∣xk−x∣<ε|x_k - x| < \varepsilonxkx<ε holds. Denoted as
lim⁡k→+∞xk=x\lim_{k \to +\infty} x_k = xk+limxk=x

Let x0\boldsymbol{x}_0x0 be an accumulation point of a set E⊆RnE \subseteq \mathbb{R}^nERn, and let A∈RmA \in \mathbb{R}^mARm be a given vector. A vector-valued function f:E→Rmf: E \to \mathbb{R}^mf:ERm is said to have a limit AAA as x\boldsymbol{x}x approaches x0\boldsymbol{x}_0x0 if for every ε>0\varepsilon > 0ε>0, there exists a δ>0\delta > 0δ>0 such that whenever 0<∣x−x0∣<δ0 < |\boldsymbol{x} - \boldsymbol{x}_0| < \delta0<xx0<δ and x∈E\boldsymbol{x} \in ExE, the inequality ∣f(x)−A∣<ε|f(\boldsymbol{x}) - A| < \varepsilonf(x)A<ε holds. When the set EEE is clear from the context, we can simply write lim⁡x→x0f(x)=A\lim_{\boldsymbol{x} \to \boldsymbol{x}_0} f(\boldsymbol{x}) = Alimxx0f(x)=A.Denoted as
lim⁡x→x0x∈Ef(x)=A\lim_{\substack{\boldsymbol{x} \to \boldsymbol{x}_0 \\ \boldsymbol{x} \in E}} f(\boldsymbol{x}) = Axx0xElimf(x)=A

ExampleLet x1>0x_1>0x1>0,xn+1=1+1xnx_{n+1}=1+\frac{1}{x_n}xn+1=1+xn1,n∈N∗n\in \mathbb{N}^*nN,Prove :
lim⁡n→∞xn<∞\lim_{n\to \infty}x_n< \inftynlimxn<

Prove

Easy to prove x_n is bounded.

xn+4−xn+2=−1xn+1xn+3(xn+3−xn+1)=1xnxn+1xn+2xn+3(xn+2−xn),∀n≥1\begin{align*} x_{n+4}-x_{n+2}&=-\frac{1}{x_{n+1}x_{n+3}}(x_{n+3}-x_{n+1})\\ &=\frac{1}{x_{n}x_{n+1}x_{n+2}x_{n+3}}(x_{n+2}-x_{n}),\quad \forall n \ge 1 \end{align*} xn+4xn+2=xn+1xn+31(xn+3xn+1)=xnxn+1xn+2xn+31(xn+2xn),n1

So x2nx_{2n}x2n and x2n−1x_{2n-1}x2n1 is monotonic and bounded sequence.So the limits is existence:

{lim⁡n→∞x2n=lim⁡n→∞1+1x2n−1lim⁡n→∞x2n+1=lim⁡n→∞1+1x2n⇒{A=1+1BB=1+1A⇒A=B\begin{align*} &\begin{cases} \lim_{n\to \infty}x_{2n}=\lim_{n\to \infty}1+\frac{1}{x_{2n-1}}\\ \lim_{n\to \infty}x_{2n+1}=\lim_{n\to \infty}1+\frac{1}{x_{2n}} \end{cases}\\ \Rightarrow & \begin{cases} A=1+\frac{1}{B}\\ B=1+\frac{1}{A} \end{cases}\Rightarrow A=B \end{align*} {limnx2n=limn1+x2n11limnx2n+1=limn1+x2n1{A=1+B1B=1+A1A=B

So the limits exists:

lim⁡n→∞xn=5+12\lim_{n\to \infty}x_n =\frac{\sqrt{5}+1}{2}nlimxn=25+1

ExampleGiven that the sequence {an}\{a_n\}{an} satisfies the condition lim⁡n→+∞(an−an−2)=0\lim\limits_{n \to +\infty} (a_n - a_{n - 2}) = 0n+lim(anan2)=0, prove that:
lim⁡n→+∞an−an−1n=0\lim_{n \to +\infty} \frac{a_n - a_{n - 1}}{n} = 0 n+limnanan1=0

Prove: Let
bn=an−an−1nb_n = \frac{a_n - a_{n - 1}}{n}bn=nanan1

Then, by using the Stolz Theorem, we can obtain:
lim⁡n→+∞b2n=lim⁡n→+∞a2n−a2n−12n=lim⁡n→+∞(a2n−a2n−1)−(a2n−2−a2n−3)2n−2(n−1)=12lim⁡n→+∞((a2n−a2n−2)−(a2n−1−a2n−3))=0 \begin{align*} \lim_{n \to +\infty} b_{2n} &= \lim_{n \to +\infty} \frac{a_{2n} - a_{2n - 1}}{2n}\\ &= \lim_{n \to +\infty} \frac{(a_{2n} - a_{2n - 1}) - (a_{2n - 2} - a_{2n - 3})}{2n - 2(n - 1)}\\ &= \frac{1}{2} \lim_{n \to +\infty} \left((a_{2n} - a_{2n - 2}) - (a_{2n - 1} - a_{2n - 3})\right) = 0 \end{align*} n+limb2n=n+lim2na2na2n1=n+lim2n2(n1)(a2na2n1)(a2n2a2n3)=21n+lim((a2na2n2)(a2n1a2n3))=0

Similarly, we can obtain lim⁡n→+∞b2n−1=0\lim\limits_{n \to +\infty} b_{2n - 1} = 0n+limb2n1=0. Therefore,
lim⁡n→+∞bn=lim⁡n→+∞an−an−1n=0\lim\limits_{n \to +\infty} b_n = \lim\limits_{n \to +\infty} \frac{a_n - a_{n - 1}}{n} = 0n+limbn=n+limnanan1=0

Example Given lim⁡n to∞an=A\lim_{n\ to\infty }a_n=Alimn toan=A,bn>0b_n>0bn>0.Donted:
cn=∑i=1naibi∑i=1nbic_n=\frac{\sum_{i=1}^na_ib_i}{\sum_{i=1}^nb_i}cn=i=1nbii=1naibi
Please prove $ \lim\limits_{n\to \infty}c_n< \infty $.

Prove

If lim⁡n→∞bn=B\lim\limits_{n\to \infty} b_n=Bnlimbn=B,we have

lim⁡n→∞cn=lim⁡n→∞∑i=1naibi∑i=1nbi=lim⁡n→∞anbnbn=lim⁡n→∞an=A\lim\limits_{n\to \infty}c_n=\lim\limits_{n\to \infty}\frac{\sum_{i=1}^na_ib_i}{\sum_{i=1}^nb_i}=\lim\limits_{n\to \infty}\frac{a_nb_n}{b_n}=\lim\limits_{n\to \infty}a_n=Anlimcn=nlimi=1nbii=1naibi=nlimbnanbn=nliman=A

If lim⁡n→∞bn=∞\lim\limits_{n\to \infty} b_n=\inftynlimbn=,we have

lim⁡n→∞cn=lim⁡n→∞∑i=1naibi∑i=1nbi=lim⁡n→∞∑i=1naibin∑i=1nbin=ABB=A\lim\limits_{n\to \infty}c_n=\lim\limits_{n\to \infty}\frac{\sum_{i=1}^na_ib_i}{\sum_{i=1}^nb_i}=\lim\limits_{n\to \infty} \frac{\frac{\sum_{i=1}^na_ib_i}{n}}{\frac{\sum_{i=1}^nb_i}{n}}=\frac{AB}{B}=Anlimcn=nlimi=1nbii=1naibi=nlimni=1nbini=1naibi=BAB=A

ExampleLet nnn and vvv be positive integers, 1≤v≤n1 \leq v \leq n1vn. Denote nvn_vnv as the remainder when nnn is divided by vvv. Calculate

(i) lim⁡n→+∞1n(n11+n22+n33+⋯+nnn)\lim_{n \to +\infty} \frac{1}{n} \left( \frac{n_1}{1} + \frac{n_2}{2} + \frac{n_3}{3} + \cdots + \frac{n_n}{n} \right)n+limn1(1n1+2n2+3n3++nnn)

(ii) lim⁡n→+∞n1+n2+⋯+nnn2\lim_{n \to +\infty} \frac{n_1 + n_2 + \cdots + n_n}{n^2}n+limn2n1+n2++nn.

Solution: Notice that

n=v[nv]+nvn = v \left[\frac{n}{v} \right] + n_v n=v[vn]+nv

(i)We have

lim⁡n→∞∑i=1nniin=lim⁡n→∞∑i=1nniin=∫01(1x−[1x])dx=∑n=1∞∫1n+11n(1x−[1x])dx=∑n=1∞(ln⁡(n+1n)−1n+1)=lim⁡n→∞(ln⁡n−∑k=1n−11k+1)=1−γ\begin{align*}\lim_{n\to \infty } \frac{\sum_{i=1}^n\frac{n_i}{i}}{n}&=\lim_{n\to \infty } \frac{\sum_{i=1}^n\frac{n_i}{i}}{n}\\ &=\int_{0}^1\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)\mathrm{d}x\\ &=\sum_{n=1}^{\infty}\int_{\frac{1}{n+1}}^{\frac{1}{n}}\left(\frac{1}{x}-\left[\frac{1}{x}\right]\right)\mathrm{d}x\\ &=\sum_{n=1}^{\infty}\left(\ln{\left(\frac{n+1}{n}\right)}-\frac{1}{n+1}\right)\\&=\lim_{n\to \infty}\left(\ln n - \sum_{k=1}^{n-1}\frac{1}{k+1}\right)=1-\gamma \end{align*}nlimni=1nini=nlimni=1nini=01(x1[x1])dx=n=1n+11n1(x1[x1])dx=n=1(ln(nn+1)n+11)=nlim(lnnk=1n1k+11)=1γ

(ii)

We have

lim⁡n→+∞n1+n2+⋯+nnn2=lim⁡n→+∞1n∑v=1n(1−vn⌊nv⌋)=1−∫01⌊1x⌋xdx=1−∑n=1∞n2(1n2−1(n+1)2)=1−12∑n=1∞(1n−1n+1+1(n+1)2)=1−12(1+∑n=1∞1(n+1)2)=1−π212. \begin{align*} &\lim_{n \to +\infty} \frac{n_1 + n_2 + \cdots + n_n}{n^2} = \lim_{n \to +\infty} \frac{1}{n} \sum_{v = 1}^{n} \left( 1 - \frac{v}{n} \left\lfloor \frac{n}{v} \right\rfloor \right) = 1 - \int_{0}^{1} \left\lfloor \frac{1}{x} \right\rfloor x \mathrm{d}x \\ &= 1 - \sum_{n = 1}^{\infty} \frac{n}{2} \left( \frac{1}{n^2} - \frac{1}{(n + 1)^2} \right) = 1 - \frac{1}{2} \sum_{n = 1}^{\infty} \left( \frac{1}{n} - \frac{1}{n + 1} + \frac{1}{(n + 1)^2} \right) \\ &= 1 - \frac{1}{2} \left( 1 + \sum_{n = 1}^{\infty} \frac{1}{(n + 1)^2} \right) = 1 - \frac{\pi^2}{12}. \end{align*} n+limn2n1+n2++nn=n+limn1v=1n(1nvvn)=101x1xdx=1n=12n(n21(n+1)21)=121n=1(n1n+11+(n+1)21)=121(1+n=1(n+1)21)=112π2.

Exampleα,β,δ\alpha,\beta ,\deltaα,β,δ is positive number,Caulate:

lim⁡n→∞∏k=0n−11+α+kδn1+β+kδn=(1+δ)α−βδ\lim_{n\to\infty}\prod_{k=0}^{n-1}\frac{1+\frac{\alpha+k\delta}{n}}{1+\frac{\beta+k\delta}{n}}=(1+\delta)^{\frac{\alpha-\beta}{\delta}}nlimk=0n11+nβ+kδ1+nα+kδ=(1+δ)δαβ

Prove

$$
\begin{align*}
\lim_{n\to\infty}\prod_{k=0}^{n-1}\frac{1+\frac{\alpha+k\delta}{n}}{1+\frac{\beta+k\delta}{n}}&=
\exp\left{\lim_{n\to\infty}\sum_{k=0}^{n-1}\ln\frac{1+\frac{\alpha+k\delta}{n}}{1+\frac{\beta+k\delta}{n}}\right}\
&=\exp\left{\lim_{n\to\infty}\sum_{k=0}^{n-1}\ln\left(1+\frac{\frac{\alpha-\beta}{\delta}}{1+\frac{\beta +k\delta}{n}}\frac{\delta}{n}\right)\right}
\
&=\exp\left{\int_{0}^{\delta}\frac{\frac{\alpha-\beta}{\delta}}{1+x}\mathrm{d}x\right}

\
&=(1+\delta)^{\frac{\alpha-\beta}{\delta}}
\end{align*}
$$

Example Caculate
lim⁡n→∞∫0111+(1+xn)ndx\lim_{n\to \infty}\int_{0}^1\frac{1}{1+\left(1+\frac{x}{n}\right)^n}\mathrm{d}xnlim011+(1+nx)n1dx

Prove

Easily to prove :

11+(1+xn)n⇉11+ex\frac{1}{1+\left(1+\frac{x}{n}\right)^n} \rightrightarrows \frac{1}{1+e^x}1+(1+nx)n11+ex1

So:

lim⁡n→∞∫0111+(1+xn)ndx=∫0111+exdx\lim_{n\to \infty}\int_{0}^1\frac{1}{1+\left(1+\frac{x}{n}\right)^n}\mathrm{d}x=\int_{0}^{1}\frac{1}{1+e^x}\mathrm{d}xnlim011+(1+nx)n1dx=011+ex1dx

Example Let α>0\alpha\gt0α>0 and nxn=1+o(n−α)(n→+∞)nx_n = 1 + o(n^{-\alpha})(n \to +\infty)nxn=1+o(nα)(n+). Prove that the sequence {x1+x2+⋯+xn−ln⁡n}\{x_1 + x_2 + \cdots + x_n-\ln n\}{x1+x2++xnlnn} converges.

Proof
Denote yn=x1+x2+⋯+xn−ln⁡n(n≥1)y_n = x_1 + x_2 + \cdots + x_n-\ln n(n\geq1)yn=x1+x2++xnlnn(n1).
For any n≥1n\geq1n1, by the Mean Value Theorem, there exists θ∈(0,1)\theta\in(0,1)θ(0,1) such that
∣yn+1−yn∣=∣xn+1−ln⁡(n+1)+ln⁡n∣=∣1n+1+o((n+1)−1−α)−1n+θ∣=∣θ−1(n+1)(n+θ)+o((n+1)−1−α)∣≤2n2+∣o((n+1)−1−α)∣ \begin{align*} |y_{n + 1}-y_n|&=|x_{n + 1}-\ln(n + 1)+\ln n|\\ &=\left|\frac{1}{n + 1}+o((n + 1)^{-1-\alpha})-\frac{1}{n+\theta}\right|\\ &=\left|\frac{\theta - 1}{(n + 1)(n+\theta)}+o((n + 1)^{-1-\alpha})\right|\\ &\leq\frac{2}{n^2}+|o((n + 1)^{-1-\alpha})| \end{align*} yn+1yn=xn+1ln(n+1)+lnn=n+11+o((n+1)1α)n+θ1=(n+1)(n+θ)θ1+o((n+1)1α)n22+o((n+1)1α)

Then, the series ∑n=1∞(yn+1−yn)\sum_{n = 1}^{\infty}(y_{n + 1}-y_n)n=1(yn+1yn) converges. The sum of the first nnn terms of this series is yn+1−y1y_{n + 1}-y_1yn+1y1, so the sequence {yn}\{y_n\}{yn} converges.

Exampleai,bia_i,b_iai,bi is real nnumber,calculate:

lim⁡x→∞1−∏i=1ncos⁡biaixx2\lim_{x\to \infty}\frac{1-\prod_{i=1}^n\cos^{b_i}{a_ix}}{x^2}xlimx21i=1ncosbiaix

Solve
lim⁡x→∞1−∏i=1ncos⁡biaixx2=lim⁡x→∞1−exp⁡∑i=1nbiln⁡cos⁡aixx2=lim⁡x→∞1−exp⁡∑i=1nbiln⁡cos⁡aixx2=lim⁡x→∞−∑i=1nbiln⁡cos⁡aixx2=L′Hospital∑i=1nai2bi2 \begin{align*} \lim_{x\to \infty}\frac{1-\prod_{i=1}^n\cos^{b_i}{a_ix}}{x^2}&=\lim_{x\to \infty}\frac{1-\exp{\sum_{i=1}^n}{b_i}\ln{\cos{a_ix}}}{x^2}\\ &=\lim_{x\to \infty}\frac{1-\exp{\sum_{i=1}^n}{b_i}\ln{\cos{a_ix}}}{x^2}\\ &=\lim_{x\to \infty}\frac{-\sum_{i=1}^n{b_i}\ln{\cos{a_ix}}}{x^2} \\& \overset{L'Hospital}{=} \sum_{i=1}^n\frac{a_i^2b_i}{2} \end{align*} xlimx21i=1ncosbiaix=xlimx21expi=1nbilncosaix=xlimx21expi=1nbilncosaix=xlimx2i=1nbilncosaix=LHospitali=1n2ai2bi

ExampleLet f′f'f be uniformly continuous on [0,+∞)[0, +\infty)[0,+) and lim⁡x→+∞f(x)\lim_{x \to +\infty} f(x)limx+f(x) exists. Prove that lim⁡x→+∞f′(x)=0\lim_{x \to +\infty} f'(x)=0limx+f(x)=0.

Prove

First, assume that lim⁡x→+∞f′(x)≠0\lim_{x \to +\infty} f'(x) \neq 0limx+f(x)=0. Then there exists ϵ0>0\epsilon_0 > 0ϵ0>0 and a sequence of numbers {xn}\{x_n\}{xn} with xn→+∞x_n \to +\inftyxn+ as n→∞n \to \inftyn, such that f′(xn)≥ϵ0f'(x_n) \geq \epsilon_0f(xn)ϵ0 or f′(xn)≤−ϵ0f'(x_n) \leq -\epsilon_0f(xn)ϵ0. Without loss of generality, we can just consider the case where f′(xn)≥ϵ0f'(x_n) \geq \epsilon_0f(xn)ϵ0. Since f′(x)f'(x)f(x) is uniformly continuous, there exists δ>0\delta > 0δ>0 such that for all x,x′≥0x, x' \geq 0x,x0 with ∣x−x′∣≤δ|x - x'| \leq \deltaxxδ, we have ∣f′(x)−f′(x′)∣≤ϵ02|f'(x) - f'(x')| \leq \frac{\epsilon_0}{2}f(x)f(x)2ϵ0. Then we can get ϵ0−f′(y)≤f′(xn)−f′(y)≤ϵ02\epsilon_0 - f'(y) \leq f'(x_n) - f'(y) \leq \frac{\epsilon_0}{2}ϵ0f(y)f(xn)f(y)2ϵ0, that is, f′(y)≥ϵ02f'(y) \geq \frac{\epsilon_0}{2}f(y)2ϵ0. Now we have:
f(xn)−f(xn−δ)=∫xn−δxnf′(y)dy≥∫xn−δxnϵ02dy=ϵ0δ2>0 f(x_n) - f(x_n - \delta) = \int_{x_n - \delta}^{x_n} f'(y) dy \geq \int_{x_n - \delta}^{x_n} \frac{\epsilon_0}{2} dy = \frac{\epsilon_0 \delta}{2} > 0 f(xn)f(xnδ)=xnδxnf(y)dyxnδxn2ϵ0dy=2ϵ0δ>0

But as xn→+∞x_n \to +\inftyxn+, we have 0≥ϵ0δ20 \geq \frac{\epsilon_0 \delta}{2}02ϵ0δ, which is a contradiction. Therefore, it is proved that lim⁡x→+∞f′(x)=0\lim_{x \to +\infty} f'(x) = 0limx+f(x)=0.

http://www.xdnf.cn/news/1339849.html

相关文章:

  • Oracle CLOB类型转换
  • k8s下的网络通信与认证
  • 【C++】模板(进阶)
  • 从YOLOv5到RKNN:零冲突转换YOLOv5模型至RK3588 NPU全指南
  • 在线课程|基于SprinBoot+vue的在线课程管理系统(源码+数据库+文档)
  • openEuler系统中如何将docker安装在指定目录
  • ES_文档
  • 【数据结构】树与二叉树:结构、性质与存储
  • 牛客:链表的回文结构详解
  • 牛客:链表分割算法详解
  • LeetCode100 -- Day3
  • C++---滑动窗口平滑数据
  • 深度学习之NLP基础
  • KB5063878补丁故障解决方案:从蓝屏幕到系统修复的全面指南
  • 短波红外科研相机:开启科研新视野的利器​
  • 【矩池云】实现Pycharm远程连接,上传数据并解压缩
  • C++入门自学Day16-- STL容器类型总结
  • 全文 part1 - DGEMM Using Tensor Cores, and Its Accurate and Reproducible Versions
  • 阿里云对象存储OSS之间进行数据转移教程
  • 打工人项目日报计划
  • 数据安全管理——解读银行保险机构数据安全管理办法【附全文阅读】
  • Elasticsearch Ruby 客户端elasticsearch / elasticsearch-api
  • DBLens 业界首创AI表结构变更审查,智能评估影响,助力开发效率跃升。
  • 数据库原理及应用_数据库基础_第2章关系数据库标准语言SQL_数据查询(2)分组查询
  • 第三方软件测试报告的行业价值
  • 两台电脑之间如何传输大文件?
  • C++设计模式--策略模式与观察者模式
  • 安卓app、微信小程序等访问多个api时等待提示调用与关闭问题
  • QT QProcess, WinExec, ShellExecute中文路径带空格程序或者脚本执行并带参数
  • 灵活使用UE5 Modeling中的UV编辑功能