当前位置: 首页 > news >正文

⭐CVPR2025 RigGS:从 2D 视频到可编辑 3D 关节物体的建模新范式

⭐CVPR 顶会论文解读|RigGS:从 2D 视频到可编辑 3D 关节物体的建模新范式

📄论文题目:RigGS: Rigging of 3D Gaussians for Modeling Articulated Objects in Videos

✍️作者及机构:Yuxin Yao、Zhi Deng、Junhui Hou(香港城市大学、中国科学技术大学)

🧩面临问题:当前关节物体建模存在诸多局限。一方面,传统方法依赖通用骨架模板(如 SMPL 用于人体、MANO 用于手部),无法处理带配饰的人体、个性化手套的手部等非标准化物体;另一方面,现有骨架提取方法或依赖艺术家设计的骨架监督、仅能处理对称物体,或提取的骨架过于密集,且部分方法依赖 3D 重建质量,在 3D 数据有限时实用性不足12。

🎯创新点及其具体研究方法:

1️⃣ 骨架感知节点控制变形场:结合 3D 高斯作为基准形状表示,设计骨架感知节点控制的变形场,使基准 3D 高斯表示随时间变形以初始化建模过程,同时生成带骨架语义的候选节点。通过渲染损失、ARAP 局部刚性损失和 2D 骨架投影约束损失优化,实现动态物体重建与候选骨架点的同步获取367。

2️⃣ 启发式 3D 骨架构建算法:基于初始重建结果选择代表平均形状的时间帧作为新基准,从骨架感知节点中通过最远点采样获取均匀分布节点,构建最小生成树形成密集骨架,再结合几何、语义(利用 DINOv2 特征)和运动信息进行简化,通过添加端点、 junction 点和几何转折点,最终形成稀疏骨架树489。

3️⃣ 骨架驱动动态模型:设计基于线性混合蒙皮(LBS)的可学习粗变形,通过学习蒙皮权重将骨架与 3D 高斯绑定;同时引入姿态依赖的细节变形模块,利用 MLP 学习高斯中心位置偏移以捕捉精细变形。通过渲染损失、骨架投影损失、细节正则化损失和身份约束损失优化,实现灵活的新动作生成51011。

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

http://www.xdnf.cn/news/1322119.html

相关文章:

  • 【2025CVPR-目标检测方向】RaCFormer:通过基于查询的雷达-相机融合实现高质量的 3D 目标检测
  • BeeWorks 私有化会议系统:筑牢企业会议安全防线,赋能高效协同
  • 高并发网络编程实战:深入理解epoll客户端的事件驱动模型
  • OpenCV---特征检测算法(ORB,Oriented FAST and Rotated BRIEF)
  • css word-pass
  • 【LeetCode 热题 100】198. 打家劫舍——(解法二)自底向上
  • Linux磁盘阵列
  • ChatGPT-5 对教育行业的影响与案例研究
  • OpenAL技术详解:跨平台3D音频API的设计与实践
  • C++最小生成树
  • 手写MyBatis第24弹:从单条插入到批量处理:MyBatis性能优化的关键技术
  • 手机视频怎么提取音频?3步转成MP3,超简单!
  • 决策树的笔记
  • 决策树学习报告
  • MCP协议
  • 世界模型之自动驾驶
  • 决策树:机器学习中的直观分类与回归工具
  • 【深度学习基础】PyTorch Tensor生成方式及复制方法详解
  • <数据集>遥感飞机识别数据集<目标检测>
  • 基于深度学习的车牌检测识别系统:YOLOv5实现高精度车牌定位与识别
  • Android Coil3视频封面抽取封面帧存Disk缓存,Kotlin(2)
  • 【LLM1】大型语言模型的基本生成机制
  • 华清远见25072班C语言学习day11
  • 当使用STL容器去存放数据时,是存放对象合适,还是存放对象指针(对象地址)合适?
  • 【C++】 using声明 与 using指示
  • Linux内存管理系统性总结
  • Orange的运维学习日记--45.Ansible进阶之文件部署
  • 获粤港澳大湾区碳足迹认证:遨游智能三防手机赋能绿色通信
  • LeetCode:无重复字符的最长子串
  • 实践笔记-VSCode与IDE同步问题解决指南;程序总是进入中断服务程序。