具体数学:和式(四)求和的一般方法
2.5 一般性的方法
2.5.1 问题引入:平方和的挑战
考虑前 nnn 个非负整数的平方和(称为平方金字塔数):
□n=∑0≤k≤nk2,n≥0(2.37)
\Box_n = \sum_{0 \le k \le n} k^2, \quad n \ge 0 \tag{2.37}
□n=0≤k≤n∑k2,n≥0(2.37)
计算前几个值以寻找规律:
nnn | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
---|---|---|---|---|---|---|---|---|---|---|---|
n2n^2n2 | 0 | 1 | 4 | 9 | 16 | 25 | 36 | 49 | 64 | 81 | 100 |
□n\Box_n□n | 0 | 1 | 5 | 14 | 30 | 55 | 91 | 140 | 204 | 285 | 385 |
从数值难以直接看出封闭形式
2.5.2 解法描述
前人智慧
利用已有数学知识库直接获取结果。
□n=n(n+1)(2n+1)6,n≥0(2.38) \Box_n = \frac{n(n+1)(2n+1)}{6}, \quad n \ge 0 \tag{2.38} □n=6n(n+1)(2n+1),n≥0(2.38)
数学归纳
假设:通过观察小规模值,猜测等价形式:
□n=n(n+12)(n+1)3,n≥0(2.39)
\Box_n = \frac{n\left(n + \frac{1}{2}\right)(n+1)}{3}, \quad n \ge 0 \tag{2.39}
□n=3n(n+21)(n+1),n≥0(2.39)
归纳证明:
-
基础步骤:n=0n=0n=0 时,□0=0=0⋅(0+12)⋅1/3\Box_0 = 0 = 0 \cdot (0 + \frac{1}{2}) \cdot 1 / 3□0=0=0⋅(0+21)⋅1/3
-
归纳步骤:假设对 n−1n-1n−1 成立,则
3□n=3□n−1+3n2=(n−1)(n−12)n+3n2=n3−32n2+12n+3n2=n3+32n2+12n=n(n+12)(n+1) \begin{align*} 3\Box_n &= 3\Box_{n-1} + 3n^2 \\&= (n-1)\left(n - \frac{1}{2}\right)n + 3n^2 \\&= n^3 - \frac{3}{2}n^2 + \frac{1}{2}n + 3n^2 \\&= n^3 + \frac{3}{2}n^2 + \frac{1}{2}n \\&= n\left(n + \frac{1}{2}\right)(n+1) \end{align*} 3□n=3□n−1+3n2=(n−1)(n−21)n+3n2=n3−23n2+21n+3n2=n3+23n2+21n=n(n+21)(n+1)
故 (2.39) 对所有 n≥0n \ge 0n≥0 成立。
归纳法的局限**:需要"先猜后证",依赖灵感或观察;无法揭示公式的内在结构。
扰动法
扰动平方和(失败)
尝试:对 □n=∑0≤k≤nk2\Box_n = \sum_{0 \le k \le n} k^2□n=∑0≤k≤nk2 应用扰动法
□n+(n+1)2=∑0≤k≤n(k+1)2=∑0≤k≤n(k2+2k+1)=□n+2∑0≤k≤nk+(n+1)
\begin{align*}
\Box_n + (n+1)^2 &= \sum_{0 \le k \le n} (k+1)^2 \\&= \sum_{0 \le k \le n} (k^2 + 2k + 1) \\&= \Box_n + 2\sum_{0 \le k \le n} k + (n+1)
\end{align*}
□n+(n+1)2=0≤k≤n∑(k+1)2=0≤k≤n∑(k2+2k+1)=□n+20≤k≤n∑k+(n+1)
结果:□n\Box_n□n 项抵消,得到线性和公式:
2∑0≤k≤nk=(n+1)2−(n+1)=n(n+1)
2\sum_{0 \le k \le n} k = (n+1)^2 - (n+1) = n(n+1)
20≤k≤n∑k=(n+1)2−(n+1)=n(n+1)
扰动法对平方和直接失效,但意外导出线性和公式 ∑k=n(n+1)/2\sum k = n(n+1)/2∑k=n(n+1)/2。
这提示:对更高次幂扰动可能解决低次幂问题。
扰动立方和(成功)
定义:□□n=∑0≤k≤nk3\Box\Box_n = \sum_{0 \le k \le n} k^3□□n=∑0≤k≤nk3(立方和)
扰动:
□□n+(n+1)3=∑0≤k≤n(k+1)3=∑0≤k≤n(k3+3k2+3k+1)=□□n+3□n+3⋅n(n+1)2+(n+1)
\begin{align*}
\Box\Box_n + (n+1)^3 &= \sum_{0 \le k \le n} (k+1)^3 \\&= \sum_{0 \le k \le n} (k^3 + 3k^2 + 3k + 1) \\&= \Box\Box_n + 3\Box_n + 3 \cdot \frac{n(n+1)}{2} + (n+1)
\end{align*}
□□n+(n+1)3=0≤k≤n∑(k+1)3=0≤k≤n∑(k3+3k2+3k+1)=□□n+3□n+3⋅2n(n+1)+(n+1)
解出 □n\Box_n□n:
3□n=(n+1)3−3n(n+1)2−(n+1)=(n+1)[(n2+2n+1)−3n2−1]=(n+1)(n2+n2)=n(n+1)(n+12)
\begin{align*}
3\Box_n &= (n+1)^3 - \frac{3n(n+1)}{2} - (n+1) \\&= (n+1) \left[ (n^2 + 2n + 1) - \frac{3n}{2} - 1 \right] \\&= (n+1) \left( n^2 + \frac{n}{2} \right) \\&= n(n+1)\left(n + \frac{1}{2}\right)
\end{align*}
3□n=(n+1)3−23n(n+1)−(n+1)=(n+1)[(n2+2n+1)−23n−1]=(n+1)(n2+2n)=n(n+1)(n+21)
最终结果:
□n=n(n+1)(2n+1)6(2.38)
\Box_n = \frac{n(n+1)(2n+1)}{6} \tag{2.38}
□n=6n(n+1)(2n+1)(2.38)
扰动法的精髓**: 当直接处理目标和式失败时,升级到更高阶问题(如立方和)可能提供额外方程,从而解出原问题。 这体现了"以退为进"的解题哲学。
成套方法
[!NOTE]
平方和天然满足线性递归关系:
{□0=0□n=□n−1+n2(n>0) \begin{cases} \Box_0 = 0 \\ \Box_n = \Box_{n-1} + n^2 & (n > 0) \end{cases} {□0=0□n=□n−1+n2(n>0)
成套方法专为线性递归设计,而 □n\Box_n□n 的递归式是最简单的线性非齐次递归(一阶线性,非齐次项为 n2n^2n2)非齐次项 n2n^2n2 是二次多项式,属于三维多项式空间 。P2=span{1,n,n2}。\mathcal{P}_2 = \text{span}\{1, n, n^2\}。P2=span{1,n,n2}我们构建的通用递归式
Rn=Rn−1+β+γn+δn2R_n = R_{n-1} + \beta + \gamma n + \delta n^2Rn=Rn−1+β+γn+δn2。精确覆盖了 P2\mathcal{P}_2P2 空间——参数 β,γ,δ\beta, \gamma, \deltaβ,γ,δ 正是该空间的坐标。
推广递归式:
{R0=αRn=Rn−1+β+γn+δn2,n>0(2.40)
\begin{cases}
R_0 = \alpha \\
R_n = R_{n-1} + \beta + \gamma n + \delta n^2, & n > 0 \tag{2.40}
\end{cases}
{R0=αRn=Rn−1+β+γn+δn2,n>0(2.40)
解的结构:
Rn=A(n)α+B(n)β+C(n)γ+D(n)δ(2.41)
R_n = A(n)\alpha + B(n)\beta + C(n)\gamma + D(n)\delta \tag{2.41}
Rn=A(n)α+B(n)β+C(n)γ+D(n)δ(2.41)
对于 □n=∑k2\Box_n = \sum k^2□n=∑k2:
- □0=0 ⟹ α=0\Box_0 = 0 \implies \alpha = 0□0=0⟹α=0
- □n−□n−1=n2=0+0⋅n+1⋅n2 ⟹ β=0,γ=0,δ=1\Box_n - \Box_{n-1} = n^2 = 0 + 0\cdot n + 1\cdot n^2 \implies \beta = 0, \gamma = 0, \delta = 1□n−□n−1=n2=0+0⋅n+1⋅n2⟹β=0,γ=0,δ=1
选择特解:Rn=1R_n = 1Rn=1(常数函数)
1=1+β+γn+δn20=β+γn+δn2
\begin{align*}
1 &= 1 + \beta + \gamma n + \delta n^2 \\
0 &= \beta + \gamma n + \delta n^2
\end{align*}
10=1+β+γn+δn2=β+γn+δn2
比较系数:
- β=0,γ=0,δ=0\beta = 0, \gamma = 0, \delta = 0β=0,γ=0,δ=0
- 初始条件:R0=1=αR_0 = 1 = \alphaR0=1=α
代入解的结构 (2.41):
1=A(n)⋅1+B(n)⋅0+C(n)⋅0+D(n)⋅0=A(n)
1 = A(n) \cdot 1 + B(n) \cdot 0 + C(n) \cdot 0 + D(n) \cdot 0 = A(n)
1=A(n)⋅1+B(n)⋅0+C(n)⋅0+D(n)⋅0=A(n)
结论:A(n)=1A(n) = 1A(n)=1(对所有 nnn)
选择特解:Rn=nR_n = nRn=n(线性函数)
代入递归式 (2.40):
n=(n−1)+β+γn+δn21=β+γn+δn2
\begin{align*}
n &= (n-1) + \beta + \gamma n + \delta n^2 \\
1 &= \beta + \gamma n + \delta n^2
\end{align*}
n1=(n−1)+β+γn+δn2=β+γn+δn2
比较系数:
- β=1,γ=0,δ=0\beta = 1, \gamma = 0, \delta = 0β=1,γ=0,δ=0
- 初始条件:R0=0=αR_0 = 0 = \alphaR0=0=α
代入解的结构 (2.41):
n=A(n)⋅0+B(n)⋅1+C(n)⋅0+D(n)⋅0=B(n)
n = A(n) \cdot 0 + B(n) \cdot 1 + C(n) \cdot 0 + D(n) \cdot 0 = B(n)
n=A(n)⋅0+B(n)⋅1+C(n)⋅0+D(n)⋅0=B(n)
结论:B(n)=nB(n) = nB(n)=n
选择特解:Rn=n2R_n = n^2Rn=n2(二次函数)
代入递归式 (2.46):
n2=(n−1)2+β+γn+δn2n2=n2−2n+1+β+γn+δn20=(δ)n2+(γ−2)n+(β+1)
\begin{align*}
n^2 &= (n-1)^2 + \beta + \gamma n + \delta n^2 \\
n^2 &= n^2 - 2n + 1 + \beta + \gamma n + \delta n^2 \\
0 &= (\delta)n^2 + (\gamma - 2)n + (\beta + 1)
\end{align*}
n2n20=(n−1)2+β+γn+δn2=n2−2n+1+β+γn+δn2=(δ)n2+(γ−2)n+(β+1)
比较系数:
- δ=0\delta = 0δ=0
- γ−2=0 ⟹ γ=2\gamma - 2 = 0 \implies \gamma = 2γ−2=0⟹γ=2
- β+1=0 ⟹ β=−1\beta + 1 = 0 \implies \beta = -1β+1=0⟹β=−1
- 初始条件:R0=0=αR_0 = 0 = \alphaR0=0=α
代入解的结构 (2.41):
n2=A(n)⋅0+B(n)⋅(−1)+C(n)⋅2+D(n)⋅0=−B(n)+2C(n)
n^2 = A(n) \cdot 0 + B(n) \cdot (-1) + C(n) \cdot 2 + D(n) \cdot 0 = -B(n) + 2C(n)
n2=A(n)⋅0+B(n)⋅(−1)+C(n)⋅2+D(n)⋅0=−B(n)+2C(n)
代入 B(n)=nB(n) = nB(n)=n:
n2=−n+2C(n)2C(n)=n2+nC(n)=n(n+1)2
\begin{align*}
n^2 &= -n + 2C(n) \\
2C(n) &= n^2 + n \\
C(n) &= \frac{n(n+1)}{2}
\end{align*}
n22C(n)C(n)=−n+2C(n)=n2+n=2n(n+1)
结论:C(n)=n(n+1)2C(n) = \frac{n(n+1)}{2}C(n)=2n(n+1)
选择特解:Rn=n3R_n = n^3Rn=n3(三次函数,因其差分含 n2n^2n2 项)
代入递归式 (2.46):
n3=(n−1)3+β+γn+δn2n3=n3−3n2+3n−1+β+γn+δn20=(δ−3)n2+(γ+3)n+(β−1)
\begin{align*}
n^3 &= (n-1)^3 + \beta + \gamma n + \delta n^2 \\
n^3 &= n^3 - 3n^2 + 3n - 1 + \beta + \gamma n + \delta n^2 \\
0 &= (\delta - 3)n^2 + (\gamma + 3)n + (\beta - 1)
\end{align*}
n3n30=(n−1)3+β+γn+δn2=n3−3n2+3n−1+β+γn+δn2=(δ−3)n2+(γ+3)n+(β−1)
比较系数:
- δ−3=0 ⟹ δ=3\delta - 3 = 0 \implies \delta = 3δ−3=0⟹δ=3
- γ+3=0 ⟹ γ=−3\gamma + 3 = 0 \implies \gamma = -3γ+3=0⟹γ=−3
- β−1=0 ⟹ β=1\beta - 1 = 0 \implies \beta = 1β−1=0⟹β=1
- 初始条件:R0=0=αR_0 = 0 = \alphaR0=0=α
代入解的结构 (2.41):
n3=A(n)⋅0+B(n)⋅1+C(n)⋅(−3)+D(n)⋅3=B(n)−3C(n)+3D(n)
n^3 = A(n) \cdot 0 + B(n) \cdot 1 + C(n) \cdot (-3) + D(n) \cdot 3 = B(n) - 3C(n) + 3D(n)
n3=A(n)⋅0+B(n)⋅1+C(n)⋅(−3)+D(n)⋅3=B(n)−3C(n)+3D(n)
代入已知函数:
- B(n)=nB(n) = nB(n)=n
- C(n)=n(n+1)2C(n) = \frac{n(n+1)}{2}C(n)=2n(n+1)
n3=n−3⋅n(n+1)2+3D(n)n3=n−3n2+3n2+3D(n)3D(n)=n3−n+3n2+3n23D(n)=n3+3n22+n2D(n)=13(n3+3n22+n2)D(n)=2n3+3n2+n6D(n)=n(2n2+3n+1)6D(n)=n(n+1)(2n+1)6 \begin{align*} n^3 &= n - 3 \cdot \frac{n(n+1)}{2} + 3D(n) \\ n^3 &= n - \frac{3n^2 + 3n}{2} + 3D(n) \\ 3D(n) &= n^3 - n + \frac{3n^2 + 3n}{2} \\ 3D(n) &= n^3 + \frac{3n^2}{2} + \frac{n}{2} \\ D(n) &= \frac{1}{3} \left( n^3 + \frac{3n^2}{2} + \frac{n}{2} \right) \\ D(n) &= \frac{2n^3 + 3n^2 + n}{6} \\ D(n) &= \frac{n(2n^2 + 3n + 1)}{6} \\ D(n) &= \frac{n(n+1)(2n+1)}{6} \end{align*} n3n33D(n)3D(n)D(n)D(n)D(n)D(n)=n−3⋅2n(n+1)+3D(n)=n−23n2+3n+3D(n)=n3−n+23n2+3n=n3+23n2+2n=31(n3+23n2+2n)=62n3+3n2+n=6n(2n2+3n+1)=6n(n+1)(2n+1)
结论:D(n)=n(n+1)(2n+1)6D(n) = \frac{n(n+1)(2n+1)}{6}D(n)=6n(n+1)(2n+1)
对于平方和 □n=∑k=0nk2\Box_n = \sum_{k=0}^n k^2□n=∑k=0nk2,参数为:
- α=0\alpha = 0α=0
- β=0\beta = 0β=0
- γ=0\gamma = 0γ=0
- δ=1\delta = 1δ=1
代入解的结构 (2.41):
□n=A(n)⋅0+B(n)⋅0+C(n)⋅0+D(n)⋅1=D(n)=n(n+1)(2n+1)6
\begin{align*}
\Box_n &= A(n)\cdot 0 + B(n)\cdot 0 + C(n)\cdot 0 + D(n)\cdot 1 \\
&= D(n) \\
&= \frac{n(n+1)(2n+1)}{6}
\end{align*}
□n=A(n)⋅0+B(n)⋅0+C(n)⋅0+D(n)⋅1=D(n)=6n(n+1)(2n+1)
最终结果:
□n=∑k=0nk2=n(n+1)(2n+1)6
\boxed{\Box_n = \sum_{k=0}^n k^2 = \frac{n(n+1)(2n+1)}{6}}
□n=k=0∑nk2=6n(n+1)(2n+1)
积分近似
当前所求近似于 y=x2y = x^2y=x2 曲线下面积:
∫0nx2 dx=n33
\int_0^n x^2 \, dx = \frac{n^3}{3}
∫0nx2dx=3n3
误差分析:
定义 En=□n−n33E_n = \Box_n - \frac{n^3}{3}En=□n−3n3,则
En=En−1+n2−(n33−(n−1)33)=En−1+n−13
\begin{align*}
E_n &= E_{n-1} + n^2 - \left( \frac{n^3}{3} - \frac{(n-1)^3}{3} \right) \\&= E_{n-1} + n - \frac{1}{3}
\end{align*}
En=En−1+n2−(3n3−3(n−1)3)=En−1+n−31
求解 EnE_nEn:
En=∑k=1n(k−13)=n(n+1)2−n3
E_n = \sum_{k=1}^n \left(k - \frac{1}{3}\right) = \frac{n(n+1)}{2} - \frac{n}{3}
En=k=1∑n(k−31)=2n(n+1)−3n
最终结果:
□n=n33+n(n+1)2−n3=n(n+1)(2n+1)6
\Box_n = \frac{n^3}{3} + \frac{n(n+1)}{2} - \frac{n}{3} = \frac{n(n+1)(2n+1)}{6}
□n=3n3+2n(n+1)−3n=6n(n+1)(2n+1)
[!TIP]
连续与离散的桥梁:
- 积分提供主导项 n33\frac{n^3}{3}3n3
- 误差项揭示低阶修正
- 此方法可推广到任意幂次和
二重和式转换
关键转换:
[!NOTE]
代数视角:k2k^2k2 的分解
关键洞察:
k2=k+k+⋯+k⏟k 次=∑j=1kk k^2 = \underbrace{k + k + \cdots + k}_{k\text{ 次}} = \sum_{j=1}^k k k2=k 次k+k+⋯+k=j=1∑kk
对固定的 kkk,将 kkk 自身相加 kkk 次,结果就是 k×k=k2k \times k = k^2k×k=k2。
□n=∑k=1nk2=∑k=1n(∑j=1kk)=∑1≤j≤k≤nk \begin{align*} \Box_n &= \sum_{k=1}^n k^2 \\&= \sum_{k=1}^n \left( \sum_{j=1}^k k \right) \\&= \sum_{1 \leq j \leq k \leq n} k \end{align*} □n=k=1∑nk2=k=1∑n(j=1∑kk)=1≤j≤k≤n∑k
□n=∑1≤k≤nk2=∑1≤j≤k≤nk(将 k 表示为 j≤k 的计数)=∑j=1n∑k=jnk=∑j=1n(j+n)(n−j+1)2=12∑j=1n[n(n+1)+j−j2]=12n2(n+1)+14n(n+1)−12□n \begin{align*} \Box_n &= \sum_{1 \le k \le n} k^2 \\&= \sum_{1 \le j \le k \le n} k \quad \text{(将 } k \text{ 表示为 } j \le k \text{ 的计数)} \\&= \sum_{j=1}^n \sum_{k=j}^n k \\&= \sum_{j=1}^n \frac{(j+n)(n-j+1)}{2} \\&= \frac{1}{2} \sum_{j=1}^n \left[ n(n+1) + j - j^2 \right] \\&= \frac{1}{2} n^2(n+1) + \frac{1}{4} n(n+1) - \frac{1}{2} \Box_n \end{align*} □n=1≤k≤n∑k2=1≤j≤k≤n∑k(将 k 表示为 j≤k 的计数)=j=1∑nk=j∑nk=j=1∑n2(j+n)(n−j+1)=21j=1∑n[n(n+1)+j−j2]=21n2(n+1)+41n(n+1)−21□n
[!NOTE]
∑j=1nn(n+1)=n(n+1)+n(n+1)+⋯+n(n+1)⏟n 个=n⋅n(n+1)=n2(n+1) \sum_{j=1}^n n(n+1) = \underbrace{n(n+1) + n(n+1) + \cdots + n(n+1)}_{n\text{ 个}} = n \cdot n(n+1) = n^2(n+1) j=1∑nn(n+1)=n 个n(n+1)+n(n+1)+⋯+n(n+1)=n⋅n(n+1)=n2(n+1)∑j=1nj=1+2+⋯+n=n(n+1)2 \sum_{j=1}^n j = 1 + 2 + \cdots + n = \frac{n(n+1)}{2} j=1∑nj=1+2+⋯+n=2n(n+1)
∑j=1nj2=□n \sum_{j=1}^n j^2 = \Box_n j=1∑nj2=□n
解方程:
□n=12n(n+12)(n+1)−12□n ⟹ 32□n=n(n+1)(2n+1)4
\Box_n = \frac{1}{2} n\left(n + \frac{1}{2}\right)(n+1) - \frac{1}{2} \Box_n \implies \frac{3}{2} \Box_n = \frac{n(n+1)(2n+1)}{4}
□n=21n(n+21)(n+1)−21□n⟹23□n=4n(n+1)(2n+1)
最终结果:
□n=n(n+1)(2n+1)6(2.38)
\Box_n = \frac{n(n+1)(2n+1)}{6} \tag{2.38}
□n=6n(n+1)(2n+1)(2.38)
有限微积分
暂略
生成函数
暂略