当前位置: 首页 > news >正文

闲庭信步使用图像验证平台加速FPGA的开发:第十二课——图像增强的FPGA实现

 (本系列只需要modelsim即可完成数字图像的处理,每个工程都搭建了全自动化的仿真环境,只需要双击文件就可以完成整个的仿真,大大降低了初学者的门槛!!!!如需要该系列的工程文件请关注知识星球:成工fpga,https://t.zsxq.com/DMeqH关注即送200GB学习资料,链接已置顶!)

本文采用的图像增强的滤波因子如下所示,由于有了data_cache模块,图像增加的FPGA实现比图像的均值滤波更加简单,直接对缓存后的5个数据就像加减即可。

这个还真的不是成工的文章越来越水了,一是因为有图像测试平台,让开发的思路非常的明确;二是我们已经设计好了data_cache模块,不用再去考虑图像的缓存;三是我们选用的这个图像增强的因子确实是简单。

在\src\sharpen文件夹下新建sharpen.sv文件,基本功能如下,首先就是例化data_cache模块获取3x3的区域像素,用加减就可以在一个时钟周期内完成因子的滤波计算。

在top文件中,例化了obtain_raw模块和sharpen模块,分别获取RAW图像并对RAW图像进行增强滤波。

在tb_image_sim文件中的第二个initial块中,将图像测试平台和FPGA硬件仿真的结果保存并比对。

我们双击sim文件夹下的top_tb.bat文件,完成系统的自动化仿真。

可以看到在modelsim的Transcript有如下的打印信息,图像测试平台和FPGA硬件仿真的结果一致。

打开img文件夹,也可以看到图像测试平台和FPGA硬件仿真的结果是一致的(no_seq*是图像测试平台处理后的图片,seq*是FPGA硬件仿真处理后的结果)。

图像增强还有别的滤波因子,比如如下的因子,效果应该更好。

在仿真测试平台,我们实现了这个因子。

重新进行仿真,仿真平台有新的因子,FPGA设计还是用旧的因子,我们比对一下效果,左边是使用新的滤波算子,右边是旧的滤波算子,很明显左边的增强效果要好一些。

http://www.xdnf.cn/news/1118611.html

相关文章:

  • opencv4.12 vs2022 cmake contrib编译
  • 基于MATLAB的Lasso回归的数据回归预测方法应用
  • 零基础完全理解视觉语言模型(VLM):从理论到代码实践
  • 【Mysql作业】
  • 从零开始学习深度学习—水果分类之PyQt5App
  • C++高频知识点(十三)
  • 掌握系统设计的精髓:12个核心设计模式的通俗解读
  • sql:sql在office中的应用有哪些?
  • 谷歌在软件工程领域应用AI的进展与未来展望
  • 数智管理学(三十三)
  • AI生成单词消消乐游戏. HTML代码
  • Opencv---blobFromImage
  • NO.4数据结构数组和矩阵|一维数组|二维数组|对称矩阵|三角矩阵|三对角矩阵|稀疏矩阵
  • 在conda的环境中安装Jupyter及其他软件包
  • SpringBoot单元测试类拿不到bean报空指针异常
  • python函数快捷的传变量地址
  • C++--红黑树封装实现set和map
  • 极矢量与轴矢量
  • Linux系统移植19:根文件系统的构建
  • leetGPU解题笔记(2)
  • C# 接口(接口可以继承接口)
  • 华为OD 处理器
  • 改进后的 OpenCV 5.x + GStreamer + Python 3.12 编译流程(适用于 Orange Pi / ARM64)
  • vue的优缺点
  • Vue 3 TypeScript 接口(Interface)使用
  • 【基于开源大模型(如deepseek)开发应用及其发展趋势的一点思考】
  • 西藏氆氇新生:牦牛绒混搭液态金属的先锋尝试
  • web:js的三种引用方式
  • MYSQL笔记1
  • 大模型之Langchain篇(二)——RAG