当前位置: 首页 > ds >正文

借助 OpenCV 和 PyTorch 库,利用卷积神经网络提取图像边缘特征

此 Python 代码借助 OpenCV 和 PyTorch 库,实现了实时获取摄像头图像,利用卷积神经网络提取图像边缘特征,并将原始图像和提取的边缘特征图像实时显示出来的功能。

代码详细说明

1. 导入必要的库

python

import cv2
import torch
import torch.nn as nn
import numpy as np

  • cv2:OpenCV 库,用于摄像头图像的读取、处理和显示。
  • torch 和 torch.nn:PyTorch 深度学习框架相关库,用于构建和运行卷积神经网络。
  • numpy:用于数值计算和数组操作。
2. 定义卷积神经网络类 EdgeDetector

python

# 定义一个简单的卷积神经网络用于边缘特征提取
class EdgeDetector(nn.Module):def __init__(self):super(EdgeDetector, self).__init__()# 定义一个卷积层,使用Sobel算子的近似卷积核来提取边缘self.conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)# Sobel算子的x方向卷积核sobel_kernel = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)self.conv.weight.data = sobel_kerneldef forward(self, x):return self.conv(x)

  • EdgeDetector 类继承自 nn.Module,这是 PyTorch 中所有神经网络模块的基类。
    • __init__ 方法:
      • self.conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False):定义一个二维卷积层,输入通道数为 1(灰度图像),输出通道数为 1,卷积核大小为 3x3,步长为 1,填充为 1,不使用偏置。
      • sobel_kernel = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0):创建 Sobel 算子的 x 方向卷积核,并将其转换为 PyTorch 张量,同时增加维度以匹配卷积层权重的形状。
      • self.conv.weight.data = sobel_kernel:将自定义的 Sobel 卷积核赋值给卷积层的权重。
    • forward 方法:定义了网络的前向传播过程,将输入 x 通过卷积层 self.conv 进行计算并返回结果。
3. 初始化卷积神经网络

python

# 初始化卷积神经网络
model = EdgeDetector()

创建 EdgeDetector 类的实例 model,用于后续的边缘特征提取。

4. 打开摄像头

python

# 打开摄像头
cap = cv2.VideoCapture(0)if not cap.isOpened():print("无法打开摄像头")exit()

  • cv2.VideoCapture(0):尝试打开默认摄像头(设备索引为 0)。
  • if not cap.isOpened():检查摄像头是否成功打开,若未成功则打印错误信息并退出程序。
5. 主循环,实时处理图像

python

while True:# 读取摄像头的一帧图像ret, frame = cap.read()if not ret:print("无法读取帧")break# 将图像转换为灰度图gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 将图像转换为PyTorch张量img_tensor = torch.from_numpy(gray).float().unsqueeze(0).unsqueeze(0)# 通过卷积神经网络提取边缘特征with torch.no_grad():edges = model(img_tensor)# 将输出转换为NumPy数组edges_np = edges.squeeze().numpy()# 对边缘特征进行归一化处理edges_np = (edges_np - edges_np.min()) / (edges_np.max() - edges_np.min()) * 255edges_np = edges_np.astype(np.uint8)# 显示原始图像和边缘特征图像cv2.imshow('Original', frame)cv2.imshow('Edges', edges_np)# 按 'q' 键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):break

  • ret, frame = cap.read():从摄像头读取一帧图像,ret 表示是否成功读取,frame 为读取到的图像数据。
  • cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY):将彩色图像转换为灰度图像,因为后续的卷积层输入要求为单通道图像。
  • torch.from_numpy(gray).float().unsqueeze(0).unsqueeze(0):将 NumPy 数组形式的灰度图像转换为 PyTorch 张量,并增加维度以匹配卷积层输入的形状(批量大小为 1,通道数为 1)。
  • with torch.no_grad():在推理过程中不计算梯度,以节省内存和计算资源。
  • edges = model(img_tensor):将图像张量输入到卷积神经网络中进行边缘特征提取。
  • edges.squeeze().numpy():将输出的张量转换为 NumPy 数组,并去除多余的维度。
  • (edges_np - edges_np.min()) / (edges_np.max() - edges_np.min()) * 255:对边缘特征数组进行归一化处理,将其像素值范围映射到 0 - 255 之间。
  • edges_np.astype(np.uint8):将归一化后的数组转换为无符号 8 位整数类型,以便使用 OpenCV 进行显示。
  • cv2.imshow('Original', frame) 和 cv2.imshow('Edges', edges_np):分别显示原始图像和提取的边缘特征图像。
  • cv2.waitKey(1) & 0xFF == ord('q'):等待 1 毫秒,检查是否按下了 'q' 键,若按下则退出循环。
6. 释放资源

python

# 释放摄像头并关闭所有窗口
cap.release()
cv2.destroyAllWindows()

  • cap.release():释放摄像头资源。
  • cv2.destroyAllWindows():关闭所有由 OpenCV 创建的窗口。

总结

此代码通过结合 OpenCV 和 PyTorch,实现了一个简单的实时图像边缘特征提取系统。利用自定义的 Sobel 卷积核的卷积神经网络对摄像头捕获的图像进行处理,最终将原始图像和提取的边缘特征图像实时显示出来。

完整代码

import cv2
import torch
import torch.nn as nn
import numpy as np# 定义一个简单的卷积神经网络用于边缘特征提取
class EdgeDetector(nn.Module):def __init__(self):super(EdgeDetector, self).__init__()# 定义一个卷积层,使用Sobel算子的近似卷积核来提取边缘self.conv = nn.Conv2d(1, 1, kernel_size=3, stride=1, padding=1, bias=False)# Sobel算子的x方向卷积核sobel_kernel = torch.tensor([[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]], dtype=torch.float32).unsqueeze(0).unsqueeze(0)self.conv.weight.data = sobel_kerneldef forward(self, x):return self.conv(x)# 初始化卷积神经网络
model = EdgeDetector()# 打开摄像头
cap = cv2.VideoCapture(0)if not cap.isOpened():print("无法打开摄像头")exit()while True:# 读取摄像头的一帧图像ret, frame = cap.read()if not ret:print("无法读取帧")break# 将图像转换为灰度图gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY)# 将图像转换为PyTorch张量img_tensor = torch.from_numpy(gray).float().unsqueeze(0).unsqueeze(0)# 通过卷积神经网络提取边缘特征with torch.no_grad():edges = model(img_tensor)# 将输出转换为NumPy数组edges_np = edges.squeeze().numpy()# 对边缘特征进行归一化处理edges_np = (edges_np - edges_np.min()) / (edges_np.max() - edges_np.min()) * 255edges_np = edges_np.astype(np.uint8)# 显示原始图像和边缘特征图像cv2.imshow('Original', frame)cv2.imshow('Edges', edges_np)# 按 'q' 键退出循环if cv2.waitKey(1) & 0xFF == ord('q'):break# 释放摄像头并关闭所有窗口
cap.release()
cv2.destroyAllWindows()

http://www.xdnf.cn/news/645.html

相关文章:

  • 【源码+文档+调试讲解】扶贫助农系统
  • VSCode PIO使用Jlink SWD烧录Stm32
  • 【C++】初始化列表
  • 信息系统项目管理工程师备考计算类真题讲解五
  • Redis ④-通用命令
  • 解决Docker 配置 daemon.json文件后无法生效
  • 【数据可视化-19】智能手机用户行为可视化分析
  • Windows 环境下安装 MariaDB 及 HeidiSQL 使用教程
  • 玩机搞机基本常识-------小米OLED屏幕机型怎么设置为永不休眠_手机不息屏_保持亮屏功能 拒绝“烧屏” ?
  • 【Vim】vim的简单使用
  • 小迪第10天http/s数据包
  • JavaScript 一维数组转二维数组
  • 修改PointLIO项目
  • STM32配置系统时钟
  • 【PyTorch】训练时跟OOM相关的提示信息
  • AI大模型之模型幻觉
  • 【HarmonyOS 5】makeObserved接口详解
  • Java表达式1.0
  • 爱在冰川-慢就是快
  • IDEA在Git提交时添加.ignore忽略文件,解决为什么Git中有时候使用.gitignore也无法忽略一些文件
  • SpringAI系列 - MCP篇(一) - 什么是MCP
  • Linux | I.MX6ULL 文件系统
  • 测试基础笔记第七天
  • 【QT】 QT中的列表框-横向列表框-树状列表框-表格列表框
  • 介绍一下 nuScenes 数据集
  • LeetCode283.移动零
  • 缓存 --- 内存缓存 or 分布式缓存
  • [OS_7] 访问操作系统对象 | offset | FHS | Handle
  • 性能比拼: Go vs Bun
  • LeRobot 项目部署运行逻辑(一)——综述