当前位置: 首页 > ds >正文

Advanced Math Math Analysis |01 Limits, Continuous

Advanced Math & Math Analysis |01 Limits, Continuous

Note: For simple definitions and corollaries, we will not elaborate.

文章目录

  • Advanced Math & Math Analysis |01 Limits, Continuous
    • Some easy knowledge
      • Mathematical induction
      • Some equation of trigonometric function
      • Inequality
    • Limits of sequence
    • Continuity and Limits of Functions

Some easy knowledge

Mathematical induction

Theorem
Let T(n)T(n)T(n) is a proposition if:

(1) T(1)T(1)T(1) is true;

(2)let T(k)(k≥1)T(k)(k\ge 1)T(k)(k1) is true;

(3) prove: T(k+1)T(k+1)T(k+1)is true.

So T(n)T(n)T(n) is true.

Example

Let n≥1n\ge 1n1 and n∈Nn\in \mathbb{N}nN,prove

n!<(n+12)nn!< \left(\frac{n+1}{2}\right)^nn!<(2n+1)n

Proof

When n=2n = 2n=2, 2!=2<94=(2+12)22! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^22!=2<49=(22+1)2, and the proposition holds.

Suppose the proposition holds when n=k(k≥2)n = k (k \geq 2)n=k(k2), that is, k!<(k+12)kk! < \left( \frac{k + 1}{2} \right)^k k!<(2k+1)k

When n=k+1n = k + 1n=k+1,

(k+1)!=k!(k+1)<(k+22⋅k+1k+2)k⋅(k+1)=(k+22)k⋅(k+1)k+1(k+2)k=(k+2)k+12k⋅(k+1k+2)k+1=2(k+22)k+1⋅1(k+2k+1)k+1=2(k+22)k+1⋅1(1+1k+1)k+1\begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} (k+1)!=k!(k+1)<(2k+2k+2k+1)k(k+1)=(2k+2)k(k+2)k(k+1)k+1=2k(k+2)k+1(k+2k+1)k+1=2(2k+2)k+1(k+1k+2)k+11=2(2k+2)k+1(1+k+11)k+11

By (1+x)n≥1+nx(1+x)^n\ge 1+nx(1+x)n1+nx,x∈(−1,+∞)x\in(-1,+\infty)x(1,+),n∈N+n\in \mathbb{N}_+nN+, we have

(1+1k+1)k+1>1+(k+1)⋅1k+1=2\left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 (1+k+11)k+1>1+(k+1)k+11=2 So (k+1)!<2(k+22)k+1⋅12=(k+22)k+1(k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} (k+1)!<2(2k+2)k+121=(2k+2)k+1

Thus, when n=k+1n = k + 1n=k+1, the proposition holds. The proof is completed.

Some equation of trigonometric function

Inequality

Limits of sequence

Example Prove an open interval has no maximum value.

Proof

For any open continue interval (a,b)(a,b)(a,b) can be mapping to (0,1)(0,1)(0,1) , by

f:x−ab−af:\frac{x-a}{b-a}f:baxa

Suppose there exists a $\max {(0,1)} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have

0<12α<12⇒12<α+12<1\begin{align*} &0< \frac{1}{2}\alpha <\frac{1}{2} \\ &\Rightarrow \frac{1}{2} < \frac{\alpha +1}{2} <1 \end{align*} 0<21α<2121<2α+1<1

Obviously,

α<α+12\alpha < \frac{\alpha +1}{2}α<2α+1

This contradicts the assumption, so the assumption is wrong.

Example Let T={x∣x∈Qand x>0,x2<2}T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}T={xxQ and x>0,x2<2}. Prove that TTT has no upper bound within Q\mathbb{Q}Q.

Proof Use proof by contradiction. Suppose TTT has a least upper bound within Q\mathbb{Q}Q. Denote sup⁡T=nm\sup T = \frac{n}{m}supT=mn (where m,n∈N∗m, n \in \mathbb{N}^*m,nN and m,nm, nm,n are coprime). Then, it is obvious that:

1<(nm)2<31 < \left( \frac{n}{m} \right)^2 < 3 1<(mn)2<3

Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) 1<(nm)2<21 < \left( \frac{n}{m} \right)^2 < 21<(mn)2<2: Let 2−n2m2=t2 - \frac{n^2}{m^2} = t2m2n2=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm+r>0\frac{n}{m} + r > 0mn+r>0, and nm+r∈Q\frac{n}{m} + r \in \mathbb{Q}mn+rQ. Since r2=n236m4t2<118tr^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}tr2=36m4n2t2<181t, and 2nmr=n23m3t<23t\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}tm2nr=3m3n2t<32t, we can obtain:
(nm+r)2−2=r2+2nmr−t<0\left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 (mn+r)22=r2+m2nrt<0
This shows that nm+r∈T\frac{n}{m} + r \in Tmn+rT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT. (2) 2<(nm)2<32 < \left( \frac{n}{m} \right)^2 < 32<(mn)2<3: Let n2m2−2=t\frac{n^2}{m^2} - 2 = tm2n22=t, then 0<t<10 < t < 10<t<1. Let r=n6m2tr = \frac{n}{6m^2}tr=6m2nt. Obviously, nm−r>0\frac{n}{m} - r > 0mnr>0, and nm−r∈Q\frac{n}{m} - r \in \mathbb{Q}mnrQ. Since 2nmr=n23m3t<t\frac{2n}{m}r = \frac{n^2}{3m^3}t < tm2nr=3m3n2t<t, we can obtain:
(nm−r)2−2=r2−2nmr+t>0\left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 (mnr)22=r2m2nr+t>0
This shows that nm−r\frac{n}{m} - rmnr is also an upper bound of TTT, which contradicts the fact that nm\frac{n}{m}mn is the least upper bound of TTT.

Example Caculate

lim⁡n→∞(2n−1)!!(2n)!!\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}nlim(2n)!!(2n1)!!
and
lim⁡n→∞n(2n−1)!!(2n)!!\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}nlimn(2n)!!(2n1)!!

Solve

(1)

lim⁡n→∞(2n−1)!!(2n)!!=0\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}nlim(2n)!!(2n1)!!=0

0≤lim⁡n→∞(2n−1)!!(2n)!!=lim⁡n→∞∏i=1n(2i−1)∏i=1n(2i)=lim⁡n→∞(∏i=1n(2i−1)∏i=1n(2i))2≤lim⁡n→∞(∏i=1n(2i−1))2∏i=1n(2i+1)∏i=1n(2i−1)=lim⁡n→∞∏i=1n(2i−1)∏i=1n(2i+1)=lim⁡n→∞12n+1=0\begin{align*} 0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\ &=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2} \\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\ &=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}} \\&=0 \end{align*}0nlim(2n)!!(2n1)!!=nlimi=1n(2i)i=1n(2i1)=nlim(i=1n(2i)i=1n(2i1))2nlimi=1n(2i+1)i=1n(2i1)(i=1n(2i1))2=nlimi=1n(2i+1)i=1n(2i1)=nlim2n+11=0

(2)

lim⁡n→∞n(2n−1)!!(2n)!!=π2\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}nlimn(2n)!!(2n1)!!=2π

∫0π2sin⁡2nxdx∫0π2sin⁡2n+1xdx≤(∫0π2sin⁡2nxdx)2≤∫0π2sin⁡2nxdx∫0π2sin⁡2n−1xdx⇒(2n−1)!!(2n)!!(2n)!!(2n+1)!!π2≤(∫0π2sin⁡2nxdx)2≤(2n−1)!!(2n)!!(2n−2)!!(2n−1)!!π2⇒π212n+1≤((2n−1)!!(2n)!!)2≤12nπ2\begin{align*} &\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right) ^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x \\\Rightarrow & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\ \\\Rightarrow & \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} \end{align*} 02πsin2nxdx02πsin2n+1xdx(02πsin2nxdx)202πsin2nxdx02πsin2n1xdx(2n)!!(2n1)!!(2n+1)!!(2n)!!2π(02πsin2nxdx)2(2n)!!(2n1)!!(2n1)!!(2n2)!!2π2π2n+11((2n)!!(2n1)!!)22n12π

So

lim⁡n→∞n(2n−1)!!(2n)!!=π2\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}nlimn(2n)!!(2n1)!!=2π

ExampleCaulate

lim⁡n→∞∑i=0nλian−i\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}nlimi=0nλiani

Solve

lim⁡n→∞∑i=0nλian−i=lim⁡n→∞∑i=0nλn−iai=lim⁡n→∞λn∑i=0naiλi=lim⁡n→∞∑i=0naiλi(1λ)n=lim⁡n→∞anλn(1λ)n−1(1λ−1)=aλ−1\begin{align*} \lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\ &=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}} \\ &=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\ &=\frac{a}{\lambda -1} \end{align*} nlimi=0nλiani=nlimi=0nλniai=nlimλni=0nλiai=nlim(λ1)ni=0nλiai=nlim(λ1)n1(λ11)λnan=λ1a

Example Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.

Proof

Only prove the case where an increasing sequence bounded above must have a limit.

Let’s assume without loss of generality that {xn}\{x_n\}{xn} is an increasing sequence bounded above.

We will use the method of proof by contradiction to show that {xn}\{x_n\}{xn} has a limit.

Suppose that the sequence {xn}\{x_n\}{xn} does not have a limit. According to the Cauchy convergence criterion, there exists ε0>0\varepsilon_0> 0ε0>0 such that for all NNN, there exist n>Nn > Nn>N where

∣xn−xN∣=xn−xN>ε0|x_n - x_N|=x_n - x_N>\varepsilon_0xnxN=xnxN>ε0

Successively take N1=1N_1 = 1N1=1, then there exists n1>N1n_1>N_1n1>N1 such that xn1−x1>ε0x_{n_1}-x_1 >\varepsilon_0xn1x1>ε0; N2=n1N_2 = n_1N2=n1, then there exists n2>n1n_2 > n_1n2>n1 such that

xn2−xn1>ε0⋮Nk=nk−1\begin{align*} x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\ N_k=n_{k - 1}\\ \end{align*}xn2xn1>ε0Nk=nk1
then there exists nk>nk−1n_k>n_{k - 1}nk>nk1 such that xnk−xnk−1>ε0x_{n_k}-x_{n_{k - 1}}>\varepsilon_0xnkxnk1>ε0. Adding up the above - listed inequalities, we get xnk−x1>kε0x_{n_k}-x_1>k\varepsilon_0xnkx1>kε0. For any real number GGG, when k>G−x1ε0k>\frac{G - x_1}{\varepsilon_0}k>ε0Gx1, we have xnk>Gx_{n_k}>Gxnk>G. This contradicts the fact that {xn}\{x_n\}{xn} is bounded above.

Therefore, the sequence {xn}\{x_n\}{xn} has a limit.

Example
Let An=∑k=1nakA_n=\sum_{k = 1}^{n}a_kAn=k=1nak, and lim⁡n→∞An\lim\limits_{n \to \infty}A_nnlimAn exists. {pn}\{p_n\}{pn} is a sequence of positive numbers that is monotonically increasing, and pn→+∞p_n\to+\inftypn+ as n→∞n\to\inftyn. Prove that:

lim⁡n→∞p1a1+p2a2+⋯+pnanpn=0\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0 nlimpnp1a1+p2a2++pnan=0

Prove

∑i=1npiaipn=∑i=2npi(Ai−Ai−1)+p1A1pn=∑i=1n−1(pi−pi+1)Ai+Anpnpn\begin{align*} \frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\ &=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n} \end{align*} pni=1npiai=pni=2npi(AiAi1)+p1A1=pni=1n1(pipi+1)Ai+Anpn

So

lim⁡n→∞∑i=1npiaipn=lim⁡n→∞∑i=1n−1(pi−pi+1)Ai+Anpnpn=−A+A=0\begin{align*} \lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n} &=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\ &=-A+A=0 \end{align*}nlimpni=1npiai=nlimpni=1n1(pipi+1)Ai+Anpn=A+A=0

Continuity and Limits of Functions

Example Letf(x)f(x)f(x)satisfy the functional equation f(2x)=f(x)f(2x)=f(x)f(2x)=f(x) on (0,+∞)(0, +\infty)(0,+), and
lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty}f(x) = Ax+limf(x)=A .Prove that
f(x)≡Af(x)\equiv Af(x)A
for x∈(0,+∞)x\in(0, +\infty)x(0,+).

Prove

∀x0∈(0,+∞)\forall x_0 \in (0,+\infty)x0(0,+),we have
f(x0)=f(2x0)=⋯=f(2nx0)f(x_0)=f(2x_0)=\cdots=f(2^nx_0)f(x0)=f(2x0)==f(2nx0)
Let n→∞n \to \inftyn
f(x0)=lim⁡n→∞f(2nx0)=f(lim⁡n→∞2nx0)=f(+∞)=Af(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=Af(x0)=nlimf(2nx0)=f(nlim2nx0)=f(+)=A

By arbitrariness of x0x_0x0,we have:

f(x)≡Af(x)\equiv A f(x)A

DefinitionnLet f:I→Rf:I\rightarrow\mathbb{R}f:IR be a function. fff is said to be uniformly continuous on III if for every ε>0\varepsilon > 0ε>0, there exists a δ>0\delta>0δ>0 such that for all x1,x2∈Ix_1,x_2\in Ix1,x2I with ∣x1−x2∣<δ|x_1 - x_2|<\deltax1x2<δ, we have ∣f(x1)−f(x2)∣<ε|f(x_1)-f(x_2)|<\varepsilonf(x1)f(x2)<ε.

ExampleIf the function f(x)f(x)f(x) is continuous on [a,+∞)[a, +\infty)[a,+) and
lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty} f(x) = A x+limf(x)=A
then f(x)f(x)f(x)is uniformly continuous on [a,+∞)[a, +\infty)[a,+).

Prove

Since lim⁡x→+∞f(x)=A\lim\limits_{x \to +\infty} f(x)=Ax+limf(x)=A, for any ε>0\varepsilon> 0ε>0, there exists X>aX > aX>a such that for all x′,x′′>Xx', x'' > Xx,x′′>X, the inequality ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε holds. Because f(x)f(x)f(x) is continuous on [a,X+1][a, X + 1][a,X+1], it is uniformly continuous. That is, there exists 0<δ<10 < \delta < 10<δ<1 such that for all x′,x′′∈[a,X+1]x', x'' \in [a, X + 1]x,x′′[a,X+1], when ∣x′−x′′∣<δ|x' - x''| < \deltaxx′′<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε. Then, for all x′,x′′∈[a,+∞)x', x'' \in [a, +\infty)x,x′′[a,+), when ∣x′−x′′∣<δ|x' - x''| < \deltaxx′′<δ, ∣f(x′)−f(x′′)∣<ε|f(x') - f(x'')| < \varepsilonf(x)f(x′′)<ε.

ExampleLet f(x)f(x)f(x) be continuous on [a,b][a, b][a,b], f(a)=f(b)=0f(a)=f(b) = 0f(a)=f(b)=0, and f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+(a)f(b)>0. Prove that f(x)f(x)f(x) has at least one zero point in (a,b)(a, b)(a,b).

Prove

  • f+′(a)f'_{+}(a)f+(a): The right - hand derivative of f(x)f(x)f(x) at x=ax = ax=a, defined as f+′(a)=lim⁡x→a+f(x)−f(a)x−a=lim⁡x→a+f(x)x−af'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}f+(a)=xa+limxaf(x)f(a)=xa+limxaf(x) (since f(a)=0f(a) = 0f(a)=0).
  • f−′(b)f'_{-}(b)f(b): The left - hand derivative of f(x)f(x)f(x) at x=bx = bx=b, defined as f−′(b)=lim⁡x→b−f(x)−f(b)x−b=lim⁡x→b−f(x)x−bf'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}f(b)=xblimxbf(x)f(b)=xblimxbf(x) (since f(b)=0f(b)=0f(b)=0).

Since f+′(a)⋅f−′(b)>0f'_{+}(a)\cdot f'_{-}(b)>0f+(a)f(b)>0, we can know that f+′(a)f'_{+}(a)f+(a) and f−′(b)f'_{-}(b)f(b) have the same sign. Then, by the definition of one - sided derivatives, we can find two points x1∈(a,a+δ1)x_1\in(a,a + \delta_1)x1(a,a+δ1) and x2∈(b−δ2,b)x_2\in(b-\delta_2,b)x2(bδ2,b) such that f(x1)f(x_1)f(x1) and f(x2)f(x_2)f(x2) have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of f(x)f(x)f(x) in the interval (x1,x2)⊆(a,b)(x_1,x_2)\subseteq(a,b)(x1,x2)(a,b).

Example
(xn−1e1x)(n)=(−1)nxn+1e1x\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}(xn1ex1)(n)=xn+1(1)nex1

By Faà di Bruno’s Formula:

dndxnf(g(x))=∑n!m1!m2!⋯mn!⋅f(m1+m2+⋯+mn)(g(x))⋅∏j=1n(g(j)(x)j!)mj\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j} dxndnf(g(x))=m1!m2!mn!n!f(m1+m2++mn)(g(x))j=1n(j!g(j)(x))mj

where:
The summation ∑\sum ranges over all sets of non - negative integers m1,m2,…,mnm_1, m_2, \dots, m_nm1,m2,,mn satisfying:
1⋅m1+2⋅m2+3⋅m3+⋯+n⋅mn=n1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n1m1+2m2+3m3++nmn=n

(xn−1e1x)(n)=e1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k∑1⋅m1+⋯+(n−k)⋅mn−k=n−k(n−k)!m1!⋯mn−k!∏j=1n−k[(−1)jxj+1]mj=M=m1+⋯+mn−ke1x∑k=0n−1(nk)(n−1)!(n−1−k)!xn−1−k⋅(−1)n−k⋅∑(n−k)!m1!⋯mn−k!⋅x−((n−k)+M)=唯一有效项为k=0xn−1⋅(−1)ne1x⋅x−2n=(−1)nxn+1e1x\begin{align*} \left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\ &\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\ &\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}} \end{align*} (xn1ex1)(n)=ex1k=0n1(kn)(n1k)!(n1)!xn1k1m1++(nk)mnk=nkm1!mnk!(nk)!j=1nk[xj+1(1)j]mj=M=m1++mnkex1k=0n1(kn)(n1k)!(n1)!xn1k(1)nkm1!mnk!(nk)!x((nk)+M)=唯一有效项为k=0xn1(1)nex1x2n=xn+1(1)nex1

Mathematical induction is easy

# Advanced  Math & Math Analysis |01 Limits, Continuous `Note: For simple definitions and corollaries, we will not elaborate.`@[toc]
## Some easy knowledge### Mathematical induction>**Theorem**
Let $T(n)$ is a proposition if:
>
>(1) $T(1)$ is true;
>
>(2)let $T(k)(k\ge 1)$ is true;
>
>(3) prove: $T(k+1)$is true.
>
>So $T(n)$ is true.**Example**Let $n\ge 1$ and $n\in \mathbb{N}$,prove $$n!< \left(\frac{n+1}{2}\right)^n$$**Proof**When $n = 2$, $2! = 2 < \frac{9}{4} = \left( \frac{2 + 1}{2} \right)^2$, and the proposition holds.Suppose the proposition holds when $n = k (k \geq 2)$, that is, $$ k! < \left( \frac{k + 1}{2} \right)^k $$When $n = k + 1$, $$ \begin{align*} (k + 1)!&= k!(k + 1)\\ &< \left( \frac{k + 2}{2} \cdot \frac{k + 1}{k + 2} \right)^k \cdot (k + 1)\\ &= \left( \frac{k + 2}{2} \right)^k \cdot \frac{(k + 1)^{k + 1}}{(k + 2)^k}\\ &= \frac{(k + 2)^{k + 1}}{2^k} \cdot \left( \frac{k + 1}{k + 2} \right)^{k + 1}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( \frac{k + 2}{k + 1} \right)^{k + 1}}\\ &= 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{\left( 1 + \frac{1}{k + 1} \right)^{k + 1}} \end{align*} $$ By $(1+x)^n\ge 1+nx$,$x\in(-1,+\infty)$,$n\in \mathbb{N}_+$, we have $$ \left( 1 + \frac{1}{k + 1} \right)^{k + 1} > 1 + (k + 1) \cdot \frac{1}{k + 1} = 2 $$ So $$ (k + 1)! < 2 \left( \frac{k + 2}{2} \right)^{k + 1} \cdot \frac{1}{2} = \left( \frac{k + 2}{2} \right)^{k + 1} $$Thus, when $n = k + 1$, the proposition holds. The proof is completed. ### Some equation of trigonometric function### Inequality## Limits of sequence>**Example** Prove  an open interval has no maximum value.**Proof**For any open continue interval $(a,b)$ can be mapping to $(0,1)$ , by$$f:\frac{x-a}{b-a}$$Suppose there exists a  $\max \{(0,1)\} \stackrel{\scriptstyle\triangle}{=} \alpha $ ,we have$$
\begin{align*}&0< \frac{1}{2}\alpha <\frac{1}{2} \\&\Rightarrow  \frac{1}{2} < \frac{\alpha +1}{2} <1
\end{align*}
$$Obviously,$$\alpha < \frac{\alpha +1}{2}$$This contradicts the assumption, so the assumption is wrong.>**Example** Let $T = \{ x \mid x \in \mathbb{Q} \text{ and } x > 0, x^2 < 2 \}$. Prove that $T$ has no upper bound within $\mathbb{Q}$.**Proof** Use proof by contradiction. Suppose $T$ has a least upper bound within $\mathbb{Q}$. Denote $\sup T = \frac{n}{m}$ (where $m, n \in \mathbb{N}^*$ and $m, n$ are coprime). Then, it is obvious that: $$ 1 < \left( \frac{n}{m} \right)^2 < 3 $$Since the square of a rational number cannot equal 2, there are only the following two possibilities: (1) $1 < \left( \frac{n}{m} \right)^2 < 2$: Let $2 - \frac{n^2}{m^2} = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} + r > 0$, and $\frac{n}{m} + r \in \mathbb{Q}$. Since $r^2 = \frac{n^2}{36m^4}t^2 < \frac{1}{18}t$, and $\frac{2n}{m}r = \frac{n^2}{3m^3}t < \frac{2}{3}t$, we can obtain: 
$$ \left( \frac{n}{m} + r \right)^2 - 2 = r^2 + \frac{2n}{m}r - t < 0 $$
This shows that $\frac{n}{m} + r \in T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. (2) $2 < \left( \frac{n}{m} \right)^2 < 3$: Let $\frac{n^2}{m^2} - 2 = t$, then $0 < t < 1$. Let $r = \frac{n}{6m^2}t$. Obviously, $\frac{n}{m} - r > 0$, and $\frac{n}{m} - r \in \mathbb{Q}$. Since $\frac{2n}{m}r = \frac{n^2}{3m^3}t < t$, we can obtain: 
$$ \left( \frac{n}{m} - r \right)^2 - 2 = r^2 - \frac{2n}{m}r + t > 0 $$
This shows that $\frac{n}{m} - r$ is also an upper bound of $T$, which contradicts the fact that $\frac{n}{m}$ is the least upper bound of $T$. >**Example** Caculate
>
>$$\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}$$
>and
>$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}$$**Solve**(1)$$\boxed{\lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}=0}$$$$\begin{align*}
0\leq \lim_{n\to \infty} \frac{(2n-1)!!}{(2n)!!}&=\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\\
&=\sqrt{\lim_{n\to \infty}\left( \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i)}\right)^2}
\\&\leq \sqrt{\lim_{n\to \infty} \frac{\left(\prod_{i=1}^n (2i-1)\right)^2}{\prod_{i=1}^n (2i+1)\prod_{i=1}^n (2i-1)}}\\
&=\sqrt{\lim_{n\to \infty} \frac{\prod_{i=1}^n (2i-1)}{\prod_{i=1}^n (2i+1)}}\\&=\sqrt{\lim_{n\to \infty} \frac{1}{2n+1}}
\\&=0
\end{align*}$$(2)$$\boxed{\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}}$$$$
\begin{align*}
&\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x \int_{0}^{\frac{\pi}{2}}\sin^{2n+1} x\mathrm{d}x \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)
^2 \leq \int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\int_{0}^{\frac{\pi}{2}}\sin^{2n-1} x\mathrm{d}x
\\\Rightarrow  & \frac{(2n-1)!!}{(2n)!!}\frac{(2n)!!}{(2n+1)!!}\frac{\pi}{2} \leq \left(\int_{0}^{\frac{\pi}{2}}\sin^{2n} x\mathrm{d}x\right)^2 \leq \frac{(2n-1)!!}{(2n)!!}\frac{(2n-2)!!}{(2n-1)!!}\frac{\pi}{2} \\
\\\Rightarrow  &  \frac{\pi}{2} \frac{1}{2n+1}\leq \left(\frac{(2n-1)!!}{(2n)!!}\right)^2 \leq \frac{1}{2n}\frac{\pi}{2} 
\end{align*}
$$So$$\lim_{n\to \infty}\sqrt{n} \frac{(2n-1)!!}{(2n)!!}=\frac{\sqrt{\pi}}{2}$$> **Example**Caulate
>
>$$\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}$$**Solve**$$
\begin{align*}
\lim_{n \to \infty}\sum_{i=0}^n \lambda ^i a_{n-i}&=\lim_{n \to \infty}\sum_{i=0}^n \lambda ^{n-i} a_{i}\\
&=\lim_{n \to \infty}\lambda ^{n}\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}\\&=\lim_{n \to \infty}\frac{\sum_{i=0}^n \frac{ a_{i}}{\lambda ^{i}}}{\left(\frac{1}{\lambda}\right) ^{n}}
\\
&=\lim_{n \to \infty}\frac{ \frac{ a_{n}}{\lambda ^{n}}}{\left(\frac{1}{\lambda}\right) ^{n-1}\left(\frac{1}{\lambda}-1\right)}\\
&=\frac{a}{\lambda -1}
\end{align*}
$$>**Example** Please use Cauchy Convergence Principle prove :A monotonic and bounded sequence must converge.**Proof**Only prove the case where an increasing sequence bounded above must have a limit. Let's assume without loss of generality that $\{x_n\}$ is an increasing sequence bounded above. We will use the method of proof by contradiction to show that $\{x_n\}$ has a limit. Suppose that the sequence $\{x_n\}$ does not have a limit. According to the Cauchy convergence criterion, there exists $\varepsilon_0> 0$ such that for all $N$, there exist $n > N$ where $$|x_n - x_N|=x_n - x_N>\varepsilon_0$$Successively take $N_1 = 1$, then there exists $n_1>N_1$ such that $x_{n_1}-x_1 >\varepsilon_0$; $N_2 = n_1$, then there exists $n_2 > n_1$ such that $$
\begin{align*}
x_{n_2}-x_{n_1}>\varepsilon_0\\ \vdots \\
N_k=n_{k - 1}\\
\end{align*}$$
then there exists $n_k>n_{k - 1}$ such that $x_{n_k}-x_{n_{k - 1}}>\varepsilon_0$. Adding up the above - listed inequalities, we get $x_{n_k}-x_1>k\varepsilon_0$. For any real number $G$, when $k>\frac{G - x_1}{\varepsilon_0}$, we have $x_{n_k}>G$. This contradicts the fact that $\{x_n\}$ is bounded above. Therefore, the sequence $\{x_n\}$ has a limit. >**Example**Let $A_n=\sum_{k = 1}^{n}a_k$, and $\lim\limits_{n \to \infty}A_n$ exists. $\{p_n\}$ is a sequence of positive numbers that is monotonically increasing, and $p_n\to+\infty$ as $n\to\infty$. Prove that:
>
>$$
\lim_{n \to \infty}\frac{p_1a_1 + p_2a_2+\cdots + p_na_n}{p_n}=0
$$  **Prove**$$
\begin{align*}
\frac{\sum_{i=1}^np_ia_i}{p_n}&=\frac{\sum_{i=2}^np_i(A_i-A_{i-1})+p_1A_1}{p_n}\\
&=\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}
\end{align*}
$$So$$
\begin{align*}
\lim\limits_{n \to \infty}\frac{\sum_{i=1}^np_ia_i}{p_n}
&=\lim\limits_{n \to \infty}\frac{\sum_{i=1}^{n-1}(p_i-p_{i+1})A_i +A_np_n}{p_n}\\
&=-A+A=0
\end{align*}$$>**Example**15. Let$f(x)$satisfy the functional equation $f(2x)=f(x)$ on $(0, +\infty)$, and 
$\lim\limits_{x \to +\infty}f(x) = A$ .Prove that 
>$$f(x)\equiv A$$
>for $x\in(0, +\infty)$. **Prove**$\forall x_0 \in (0,+\infty)$,we have
$$f(x_0)=f(2x_0)=\cdots=f(2^nx_0)$$
Let $n \to \infty$
$$f(x_0)=\lim_{n\to \infty}f(2^nx_0)=f(\lim_{n\to \infty}2^nx_0)=f(+\infty)=A$$By arbitrariness of $x_0$,we have:$$f(x)\equiv A $$>**Definitionn**Let $f:I\rightarrow\mathbb{R}$ be a function. $f$ is said to be **uniformly continuous** on $I$ if for every $\varepsilon > 0$, there exists a $\delta>0$ such that for all $x_1,x_2\in I$ with $|x_1 - x_2|<\delta$, we have $|f(x_1)-f(x_2)|<\varepsilon$.>**Example**If the function $f(x)$ is continuous on $[a, +\infty)$ and 
>$$\lim\limits_{x \to +\infty} f(x) = A
>$$ 
>then $f(x)$is uniformly continuous on $[a, +\infty)$.  **Prove**Since $\lim\limits_{x \to +\infty} f(x)=A$, for any $\varepsilon> 0$, there exists $X > a$ such that for all $x', x'' > X$, the inequality $|f(x') - f(x'')| < \varepsilon$ holds.  Because $f(x)$ is continuous on $[a, X + 1]$, it is uniformly continuous. That is, there exists $0 < \delta < 1$ such that for all $x', x'' \in [a, X + 1]$, when $|x' - x''| < \delta$,  $|f(x') - f(x'')| < \varepsilon$.  Then, for all $x', x'' \in [a, +\infty)$, when $|x' - x''| < \delta$,  $|f(x') - f(x'')| < \varepsilon$. 
>**Example**Let $f(x)$ be continuous on $[a, b]$, $f(a)=f(b) = 0$, and $f'_{+}(a)\cdot f'_{-}(b)>0$. Prove that $f(x)$ has at least one zero point in $(a, b)$.**Prove**- $f'_{+}(a)$: The right - hand derivative of $f(x)$ at $x = a$, defined as $f'_{+}(a)=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)-f(a)}{x - a}=\lim\limits_{x\rightarrow a^{+}}\frac{f(x)}{x - a}$ (since $f(a) = 0$).
- $f'_{-}(b)$: The left - hand derivative of $f(x)$ at $x = b$, defined as $f'_{-}(b)=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)-f(b)}{x - b}=\lim\limits_{x\rightarrow b^{-}}\frac{f(x)}{x - b}$ (since $f(b)=0$). Since $f'_{+}(a)\cdot f'_{-}(b)>0$, we can know that $f'_{+}(a)$ and $f'_{-}(b)$ have the same sign. Then, by the definition of one - sided derivatives, we can find two points $x_1\in(a,a + \delta_1)$ and $x_2\in(b-\delta_2,b)$ such that $f(x_1)$ and $f(x_2)$ have opposite signs . Then, by the Intermediate Value Theorem, there must be a zero point of $f(x)$ in the interval $(x_1,x_2)\subseteq(a,b)$. >**Example**
>$$\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}=\frac{(-1)^n}{x^{n+1}}e^{\frac{1}{x}}$$By **Faà di Bruno's Formula**:  $$
\frac{\mathrm{d}^n}{\mathrm{d}x^n} f(g(x)) = \sum \frac{n!}{m_1! \, m_2! \, \cdots \, m_n!} \cdot f^{(m_1 + m_2 + \cdots + m_n)}(g(x)) \cdot \prod_{j=1}^n \left( \frac{g^{(j)}(x)}{j!} \right)^{m_j}
$$  where:  
The summation $\sum$ ranges over all sets of non - negative integers $m_1, m_2, \dots, m_n$ satisfying:  
$$1 \cdot m_1 + 2 \cdot m_2 + 3 \cdot m_3 + \cdots + n \cdot m_n = n$$  $$
\begin{align*}
\left(x^{n-1}e^{\frac{1}{x}}\right)^{(n)}&=e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\sum_{\substack{1 \cdot m_1 + \cdots + (n-k) \cdot m_{n-k} = n-k}}\frac{(n-k)!}{m_1!\cdots m_{n-k}!}\prod_{j=1}^{n-k}\left[\frac{(-1)^j}{x^{j+1}}\right]^{m_j}\\
&\stackrel{M=m_1+\cdots +m_{n-k}}{=}e^{\frac{1}{x}}\sum_{k=0}^{n-1}\binom{n}{k}\frac{(n-1)!}{(n-1-k)!} x^{n-1-k}\cdot (-1)^{n-k} \cdot \sum \frac{(n-k)!}{m_1! \cdots m_{n-k}!} \cdot x^{-((n-k) + M)}\\
&\stackrel{\text{唯一有效项为}k = 0}{=}x^{n-1} \cdot (-1)^n e^{\frac{1}{x}} \cdot x^{-2n} = \frac{(-1)^n}{x^{n+1}} e^{\frac{1}{x}}
\end{align*}
$$`Mathematical induction is easy`
http://www.xdnf.cn/news/18459.html

相关文章:

  • 力扣hot100:最大子数组和的两种高效方法:前缀和与Kadane算法(53)
  • 学习设计模式《二十三》——桥接模式
  • uniapp:h5链接拉起支付宝支付
  • 有向图(Directed Graph)和有向无环图(Directed Acyclic Graph,DAG)代码实践
  • pcl求平面点云的边界凸包点
  • 池化技术分析
  • GISBox工具:FBX到3DTiles文件转换指南
  • Eclipse 里Mybatis的xml的头部报错
  • 仿真驱动的AI自动驾驶汽车安全设计与测试
  • JVM基础知识总结
  • 深入解析FTP核心术语03
  • PWA》》以京东为例安装到PC端
  • 从二进制固件到人类意识:AI小智开发全记录与技术沉思—— 一个创客的硬件实践与认知边界探索
  • 数据预处理
  • 怎么确定mongodb是不是链接上了?
  • 电脑驱动免费更新? 这款驱动管理工具:一键扫更新,还能备份恢复,小白也会用~
  • 嵌入式音频开发(3)- AudioService核心功能
  • uniapp开发微信小程序自定义导航栏
  • K距离间隔重排字符串 (LeetCode 358) — Swift解法 + 可运行Demo
  • 嵌入式开发学习———Linux环境下网络编程学习(四)
  • 计算机网络基础复习
  • 鸿蒙安卓前端中加载丢帧:ArkWeb分析
  • (5)软件包管理器 yum | Vim 编辑器 | Vim 文本批量化操作 | 配置 Vim
  • K8S-Pod资源对象
  • Electron开发的核心功能要点总结,旨在帮助快速掌握Electron开发核心逻辑
  • 用TestComplete打造高效CI/CD测试流程
  • 计算机网络技术-局域网配置(Day.4)
  • 车联网(V2X)中万物的重新定义---联网汽车新时代
  • 算法第五十二天:图论part03(第十一章)
  • 【图论】拓扑排序