B+树高效实现与优化技巧
B树的定义
一颗M阶B树T,满足以下条件
- 每个结点至多拥有M课子树
- 根结点至少拥有两颗子树
- 除了根结点以外,其余每个分支结点至少拥有M/2课子树
- 所有的叶结点都在同一层上
- 有k棵子树的分支结点则存在k-1个关键字,关键字按照递增顺序进行排序
- 关键字数量满足 ceil( M/2 ) - 1 <= n <= M-1
B树与B+树的区别
在实际磁盘存储中往往选用的都是b+树
b+树相较于b树的优点
- 关键字不保存数据,只用来索引,所有数据都保存在叶子结点(b树是每个关键字都保存数据)
- b+树的叶子结点是带有指针的,且叶结点本身按关键字从小到大顺序连接(适用于范围查询)
- b+树的中间结点不保存数据,所以磁盘页能容纳更多结点元素,更“矮胖”
C++ B+树算法
构建B+树的基本结构
B+树是一种多路平衡搜索树,常用于数据库和文件系统索引。以下是一个简单的B+树节点结构定义:
template <typename Key, typename Value>
class BPlusNode {
public:bool is_leaf;std::vector<Key> keys;std::vector<Value> values; // Only for leaf nodesstd::vector<BPlusNode*> children; // Only for non-leaf nodesBPlusNode* next; // Pointer to next leaf node (for range queries)
};
插入操作的实现
插入操作需要处理节点分裂和键的重新分配。以下是插入逻辑的核心代码片段:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::insert(const Key& key, const Value& value) {if (root == nullptr) {root = new BPlusNode<Key, Value>(true);root->keys.push_back(key);root->values.push_back(value);return;}BPlusNode<Key, Value>* leaf = find_leaf(root, key);leaf->keys.push_back(key);leaf->values.push_back(value);std::sort(leaf->keys.begin(), leaf->keys.end());if (leaf->keys.size() > order) {split_leaf(leaf);}
}
删除操作的实现
删除操作需要处理节点合并和键的重新分配。以下是删除逻辑的核心代码片段:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::remove(const Key& key) {BPlusNode<Key, Value>* leaf = find_leaf(root, key);auto it = std::find(leaf->keys.begin(), leaf->keys.end(), key);if (it == leaf->keys.end()) return;size_t index = it - leaf->keys.begin();leaf->keys.erase(leaf->keys.begin() + index);leaf->values.erase(leaf->values.begin() + index);if (leaf != root && leaf->keys.size() < (order + 1) / 2) {handle_underflow(leaf);}
}
范围查询的实现
B+树支持高效的范围查询,以下是实现代码片段:
template <typename Key, typename Value>
std::vector<Value> BPlusTree<Key, Value>::range_query(const Key& start, const Key& end) {std::vector<Value> result;BPlusNode<Key, Value>* leaf = find_leaf(root, start);while (leaf != nullptr) {for (size_t i = 0; i < leaf->keys.size(); ++i) {if (leaf->keys[i] >= start && leaf->keys[i] <= end) {result.push_back(leaf->values[i]);}if (leaf->keys[i] > end) return result;}leaf = leaf->next;}return result;
}
完整B+树类的定义
以下是一个完整的B+树类定义,包含构造函数和析构函数:
template <typename Key, typename Value>
class BPlusTree {
private:int order;BPlusNode<Key, Value>* root;
public:BPlusTree(int order) : order(order), root(nullptr) {}~BPlusTree() { clear(root); }void insert(const Key& key, const Value& value);void remove(const Key& key);Value search(const Key& key);std::vector<Value> range_query(const Key& start, const Key& end);
private:BPlusNode<Key, Value>* find_leaf(BPlusNode<Key, Value>* node, const Key& key);void split_leaf(BPlusNode<Key, Value>* leaf);void handle_underflow(BPlusNode<Key, Value>* node);void clear(BPlusNode<Key, Value>* node);
};
测试B+树的插入和查询
以下是一个简单的测试用例,验证B+树的插入和查询功能:
void test_b_plus_tree() {BPlusTree<int, std::string> tree(3);tree.insert(1, "Alice");tree.insert(2, "Bob");tree.insert(3, "Charlie");assert(tree.search(2) == "Bob");auto results = tree.range_query(1, 3);assert(results.size() == 3);
}
处理节点分裂的逻辑
当叶子节点的键数量超过阶数时,需要进行分裂:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::split_leaf(BPlusNode<Key, Value>* leaf) {BPlusNode<Key, Value>* new_leaf = new BPlusNode<Key, Value>(true);size_t split_pos = leaf->keys.size() / 2;new_leaf->keys.assign(leaf->keys.begin() + split_pos, leaf->keys.end());new_leaf->values.assign(leaf->values.begin() + split_pos, leaf->values.end());leaf->keys.erase(leaf->keys.begin() + split_pos, leaf->keys.end());leaf->values.erase(leaf->values.begin() + split_pos, leaf->values.end());new_leaf->next = leaf->next;leaf->next = new_leaf;insert_into_parent(leaf, new_leaf->keys[0], new_leaf);
}
处理节点下溢的逻辑
当节点的键数量低于最小值时,需要进行合并或借用:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::handle_underflow(BPlusNode<Key, Value>* node) {if (node == root) {if (node->keys.empty() && !node->children.empty()) {root = node->children[0];delete node;}return;}// Borrow or merge with siblingsBPlusNode<Key, Value>* parent = find_parent(root, node);// Implementation depends on sibling availability and size
}
查找父节点的辅助函数
以下是一个辅助函数,用于查找给定节点的父节点:
template <typename Key, typename Value>
BPlusNode<Key, Value>* BPlusTree<Key, Value>::find_parent(BPlusNode<Key, Value>* current, BPlusNode<Key, Value>* child) {if (current == nullptr || current->is_leaf) return nullptr;for (size_t i = 0; i < current->children.size(); ++i) {if (current->children[i] == child) {return current;}auto parent = find_parent(current->children[i], child);if (parent != nullptr) return parent;}return nullptr;
}
插入到父节点的逻辑
分裂后需要将新节点的键插入到父节点中:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::insert_into_parent(BPlusNode<Key, Value>* left, const Key& key, BPlusNode<Key, Value>* right) {BPlusNode<Key, Value>* parent = find_parent(root, left);if (parent == nullptr) {parent = new BPlusNode<Key, Value>(false);parent->keys.push_back(key);parent->children.push_back(left);parent->children.push_back(right);root = parent;return;}auto it = std::lower_bound(parent->keys.begin(), parent->keys.end(), key);size_t index = it - parent->keys.begin();parent->keys.insert(it, key);parent->children.insert(parent->children.begin() + index + 1, right);if (parent->keys.size() > order) {split_internal(parent);}
}
内部节点分裂的逻辑
内部节点的分裂与叶子节点类似,但需要处理子节点指针:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::split_internal(BPlusNode<Key, Value>* node) {BPlusNode<Key, Value>* new_node = new BPlusNode<Key, Value>(false);size_t split_pos = node->keys.size() / 2;Key middle_key = node->keys[split_pos];new_node->keys.assign(node->keys.begin() + split_pos + 1, node->keys.end());new_node->children.assign(node->children.begin() + split_pos + 1, node->children.end());node->keys.erase(node->keys.begin() + split_pos, node->keys.end());node->children.erase(node->children.begin() + split_pos + 1, node->children.end());insert_into_parent(node, middle_key, new_node);
}
清除B+树的逻辑
析构时需要递归释放所有节点的内存:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::clear(BPlusNode<Key, Value>* node) {if (node == nullptr) return;if (!node->is_leaf) {for (auto child : node->children) {clear(child);}}delete node;
}
搜索操作的实现
根据键查找对应的值:
template <typename Key, typename Value>
Value BPlusTree<Key, Value>::search(const Key& key) {BPlusNode<Key, Value>* leaf = find_leaf(root, key);auto it = std::find(leaf->keys.begin(), leaf->keys.end(), key);if (it == leaf->keys.end()) throw std::runtime_error("Key not found");return leaf->values[it - leaf->keys.begin()];
}
查找叶子节点的辅助函数
以下是一个辅助函数,用于查找包含给定键的叶子节点:
template <typename Key, typename Value>
BPlusNode<Key, Value>* BPlusTree<Key, Value>::find_leaf(BPlusNode<Key, Value>* node, const Key& key) {if (node == nullptr) return nullptr;if (node->is_leaf) return node;auto it = std::upper_bound(node->keys.begin(), node->keys.end(), key);size_t index = it - node->keys.begin();return find_leaf(node->children[index], key);
}
测试B+树的删除功能
以下是一个测试用例,验证B+树的删除功能:
void test_b_plus_tree_deletion() {BPlusTree<int, std::string> tree(3);tree.insert(1, "Alice");tree.insert(2, "Bob");tree.insert(3, "Charlie");tree.remove(2);try {tree.search(2);assert(false); // Should throw} catch (const std::runtime_error& e) {assert(std::string(e.what()) == "Key not found");}
}
处理叶子节点合并的逻辑
当叶子节点的键数量不足时,需要与兄弟节点合并:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::merge_leaves(BPlusNode<Key, Value>* left, BPlusNode<Key, Value>* right) {left->keys.insert(left->keys.end(), right->keys.begin(), right->keys.end());left->values.insert(left->values.end(), right->values.begin(), right->values.end());left->next = right->next;remove_from_parent(right);delete right;
}
从父节点中删除键的逻辑
合并后需要从父节点中删除对应的键:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::remove_from_parent(BPlusNode<Key, Value>* child) {BPlusNode<Key, Value>* parent = find_parent(root, child);if (parent == nullptr) return;auto it = std::find(parent->children.begin(), parent->children.end(), child);if (it == parent->children.end()) return;size_t index = it - parent->children.begin();if (index > 0) {parent->keys.erase(parent->keys.begin() + index - 1);}parent->children.erase(it);if (parent != root && parent->keys.size() < (order + 1) / 2 - 1) {handle_underflow(parent);}
}
测试B+树的合并功能
以下是一个测试用例,验证B+树的合并功能:
void test_b_plus_tree_merge() {BPlusTree<int, std::string> tree(3);for (int i = 1; i <= 4; ++i) {tree.insert(i, "Value" + std::to_string(i));}tree.remove(1);tree.remove(2);assert(tree.search(3) == "Value3");assert(tree.search(4) == "Value4");
}
B+树的持久化存储
将B+树保存到文件中以便后续加载:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::serialize(const std::string& filename) {std::ofstream out(filename, std::ios::binary);serialize_node(out, root);out.close();
}
序列化节点的逻辑
递归序列化节点及其子节点:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::serialize_node(std::ofstream& out, BPlusNode<Key, Value>* node) {if (node == nullptr) return;out.write(reinterpret_cast<char*>(&node->is_leaf), sizeof(bool));size_t size = node->keys.size();out.write(reinterpret_cast<char*>(&size), sizeof(size_t));for (const auto& key : node->keys) {out.write(reinterpret_cast<const char*>(&key), sizeof(Key));}if (node->is_leaf) {for (const auto& value : node->values) {size_t val_size = value.size();out.write(reinterpret_cast<char*>(&val_size), sizeof(size_t));out.write(value.c_str(), val_size);}} else {for (auto child : node->children) {serialize_node(out, child);}}
}
从文件加载B+树
从文件中加载B+树:
template <typename Key, typename Value>
void BPlusTree<Key, Value>::deserialize(const std::string& filename) {std::ifstream in(filename, std::ios::binary);if (!in) return;clear(root);root = deserialize_node(in);in.close();
}
反序列化节点的逻辑
递归加载节点及其子节点:
template <typename Key, typename Value>
BPlusNode<Key, Value>* BPlusTree<Key, Value>::deserialize_node(std::ifstream& in) {if (in.eof()) return nullptr;bool is_leaf;in.read(reinterpret_cast<char*>(&is_leaf), sizeof(bool));BPlusNode<Key, Value>* node = new BPlusNode<Key, Value>(is_leaf);size_t size;in.read(reinterpret_cast<char*>(&size), sizeof(size_t));node->keys.resize(size);for (size_t i = 0; i < size; ++i) {in.read(reinterpret_cast<char*>(&node->keys[i]), sizeof(Key));}if (is_leaf) {node->values.resize(size);for (size_t i = 0; i < size; ++i) {size_t val_size;in.read(reinterpret_cast<char*>(&val_size), sizeof(size_t));char* buffer = new char[val_size + 1];in.read(buffer, val_size);buffer[val_size] = '\0';node->values[i] = std::string(buffer);delete[] buffe