当前位置: 首页 > web >正文

Python训练打卡Day23

机器学习管道 pipeline

基础概念

        pipeline在机器学习领域可以翻译为“管道”,也可以翻译为“流水线”,是机器学习中一个重要的概念。

        在机器学习中,通常会按照一定的顺序对数据进行预处理、特征提取、模型训练和模型评估等步骤,以实现机器学习模型的训练和评估。为了方便管理这些步骤,我们可以使用pipeline来构建一个完整的机器学习流水线。

        pipeline是一个用于组合多个估计器(estimator)的 estimator,它实现了一个流水线,其中每个估计器都按照一定的顺序执行。在pipeline中,每个估计器都实现了fit和transform方法,fit方法用于训练模型,transform方法用于对数据进行预处理和特征提取。

        在此之前我们先介绍下 转换器(transformer)和估计器(estimator)的概念。

转换器(transformer)

        转换器(transformer)是一个用于对数据进行预处理和特征提取的 estimator,它实现一个 transform 方法,用于对数据进行预处理和特征提取。转换器通常用于对数据进行预处理,例如对数据进行归一化、标准化、缺失值填充等。转换器也可以用于对数据进行特征提取,例如对数据进行特征选择、特征组合等。转换器的特点是无状态的,即它们不会存储任何关于数据的状态信息(指的是不存储内参)。转换器仅根据输入数据学习转换规则(比如函数规律、外参),并将其应用于新的数据。因此,转换器可以在训练集上学习转换规则,并在训练集之外的新数据上应用这些规则。

        常见的转换器包括数据缩放器(如StandardScaler、MinMaxScaler)、特征选择器(如SelectKBest、PCA)、特征提取器(如CountVectorizer、TF-IDFVectorizer)等。

        之前都是说对xxxx类进行实例化,现在可以换一个更加准确的说法,如下:

# 导入StandardScaler转换器
from sklearn.preprocessing import StandardScaler# 初始化转换器
scaler = StandardScaler()# 1. 学习训练数据的缩放规则(计算均值和标准差),本身不存储数据
scaler.fit(X_train)# 2. 应用规则到训练数据和测试数据
X_train_scaled = scaler.transform(X_train)
X_test_scaled = scaler.transform(X_test)# 也可以使用fit_transform一步完成
# X_train_scaled = scaler.fit_transform(X_train)
估计器(estimator)

        估计器(Estimator)是实现机器学习算法的对象或类。它用于拟合(fit)数据并进行预测(predict)。估计器是机器学习模型的基本组成部分,用于从数据中学习模式、进行预测和进行模型评估。

        估计器的主要方法是fit和predict。fit方法用于根据输入数据学习模型的参数和规律,而predict方法用于对新的未标记样本进行预测。估计器的特点是有状态的,即它们在训练过程中存储了关于数据的状态信息,以便在预测阶段使用。估计器通过学习训练数据中的模式和规律来进行预测。因此,估计器需要在训练集上进行训练,并使用训练得到的模型参数对新数据进行预测。

        常见的估计器包括分类器(classifier)、回归器(regresser)、聚类器(clusterer)。

from sklearn.linear_model import LinearRegression
# 创建一个回归器
model = LinearRegression()
# 在训练集上训练模型
model.fit(X_train_scaled, y_train)
# 对测试集进行预测
y_pred = model.predict(X_test_scaled)

管道(pipeline)

        了解了分类器和估计器,所以可以理解为在机器学习是由转换器(Transformer)和估计器(Estimator)按照一定顺序组合在一起的来完成了整个流程。

        机器学习的管道(Pipeline)机制通过将多个转换器和估计器按顺序连接在一起,可以构建一个完整的数据处理和模型训练流程。在管道机制中,可以使用Pipeline类来组织和连接不同的转换器和估计器。Pipeline类提供了一种简单的方式来定义和管理机器学习任务的流程。

        管道机制是按照封装顺序依次执行的一种机制,在机器学习算法中得以应用的根源在于,参数集在新数据集(比如测试集)上的重复使用。且代码看上去更加简洁明确。这也意味着,很多个不同的数据集,只要处理成管道的输入形式,后续的代码就可以复用。(这里为我们未来的python文件拆分做铺垫),也就是把很多个类和函数操作写进一个新的pipeline中。

        这符合编程中的一个非常经典的思想:don't repeat yourself。(dry原则),也叫做封装思想,我们之前提到过类似的思想的应用: 函数、类,现在我们来说管道。

        Pipeline最大的价值和核心应用场景之一,就是与交叉验证和网格搜索等结合使用,来:

        1. 防止数据泄露: 这是在使用交叉验证时,Pipeline自动完成预处理并在每个折叠内独立fit/transform的关键优势。

        2. 简化超参数调优: 可以方便地同时调优预处理步骤和模型的参数。

        下面我们将对我们的信贷数据集进行管道工程,重构整个代码。之所以提到管道,是因为后续你在阅读一些经典的代码的时候,尤其是官方文档,非常喜欢用管道来构建代码,甚至深度学习中也有类似的代码,初学者往往看起来很吃力。

pipeline代码示例:
导入库和数据加载
# 导入基础库
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
import time # 导入 time 库
import warnings# 忽略警告
warnings.filterwarnings("ignore")# 设置中文字体和负号正常显示
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False# 导入 Pipeline 和相关预处理工具
from sklearn.pipeline import Pipeline # 用于创建机器学习工作流
from sklearn.compose import ColumnTransformer # 用于将不同的预处理应用于不同的列
from sklearn.preprocessing import OrdinalEncoder, OneHotEncoder, StandardScaler # 用于数据预处理(有序编码、独热编码、标准化)
from sklearn.impute import SimpleImputer # 用于处理缺失值# 导入机器学习模型和评估工具
from sklearn.ensemble import RandomForestClassifier # 随机森林分类器
from sklearn.metrics import classification_report, confusion_matrix # 用于评估分类器性能
from sklearn.model_selection import train_test_split # 用于划分训练集和测试集# --- 加载原始数据 ---
# 我们加载原始数据,不对其进行任何手动预处理
data = pd.read_csv('data.csv')print("原始数据加载完成,形状为:", data.shape)
# print(data.head()) # 可以打印前几行看看原始数据

原始数据加载完成,形状为: (7500, 18)

分离特征和标签,划分数据集
# --- 分离特征和标签 (使用原始数据) ---
y = data['Credit Default'] # 标签
X = data.drop(['Credit Default'], axis=1) # 特征 (axis=1 表示按列删除)print("\n特征和标签分离完成。")
print("特征 X 的形状:", X.shape)
print("标签 y 的形状:", y.shape)# --- 划分训练集和测试集 (在任何预处理之前划分) ---
# 按照8:2划分训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) # 80%训练集,20%测试集print("\n数据集划分完成 (预处理之前)。")
print("X_train 形状:", X_train.shape)
print("X_test 形状:", X_test.shape)
print("y_train 形状:", y_train.shape)
print("y_test 形状:", y_test.shape)特征和标签分离完成。
特征 X 的形状: (7500, 17)
标签 y 的形状: (7500,)数据集划分完成 (预处理之前)。
X_train 形状: (6000, 17)
X_test 形状: (1500, 17)
y_train 形状: (6000,)
y_test 形状: (1500,)
定义预处理步骤
# --- 定义不同列的类型和它们对应的预处理步骤 ---
# 这些定义是基于原始数据 X 的列类型来确定的# 识别原始的 object 列 (对应你原代码中的 discrete_features 在预处理前)
object_cols = X.select_dtypes(include=['object']).columns.tolist()
# 识别原始的非 object 列 (通常是数值列)
numeric_cols = X.select_dtypes(exclude=['object']).columns.tolist()# 有序分类特征 (对应你之前的标签编码)
# 注意:OrdinalEncoder默认编码为0, 1, 2... 对应你之前的1, 2, 3...需要在模型解释时注意
# 这里的类别顺序需要和你之前映射的顺序一致
ordinal_features = ['Home Ownership', 'Years in current job', 'Term']
# 定义每个有序特征的类别顺序,这个顺序决定了编码后的数值大小
ordinal_categories = [['Own Home', 'Rent', 'Have Mortgage', 'Home Mortgage'], # Home Ownership 的顺序 (对应1, 2, 3, 4)['< 1 year', '1 year', '2 years', '3 years', '4 years', '5 years', '6 years', '7 years', '8 years', '9 years', '10+ years'], # Years in current job 的顺序 (对应1-11)['Short Term', 'Long Term'] # Term 的顺序 (对应0, 1)
]
# 构建处理有序特征的 Pipeline: 先填充缺失值,再进行有序编码
ordinal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值('encoder', OrdinalEncoder(categories=ordinal_categories, handle_unknown='use_encoded_value', unknown_value=-1)) # 进行有序编码
])
print("有序特征处理 Pipeline 定义完成。")# 标称分类特征 (对应你之前的独热编码)
nominal_features = ['Purpose'] # 使用原始列名
# 构建处理标称特征的 Pipeline: 先填充缺失值,再进行独热编码
nominal_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充分类特征的缺失值('onehot', OneHotEncoder(handle_unknown='ignore', sparse_output=False)) # 进行独热编码, sparse_output=False 使输出为密集数组
])
print("标称特征处理 Pipeline 定义完成。")# 连续特征 (对应你之前的众数填充 + 添加标准化)
# 从所有列中排除掉分类特征,得到连续特征列表
# continuous_features = X.columns.difference(object_cols).tolist() # 原始X中非object类型的列
# 也可以直接从所有列中排除已知的有序和标称特征
continuous_features = [f for f in X.columns if f not in ordinal_features + nominal_features]# 构建处理连续特征的 Pipeline: 先填充缺失值,再进行标准化
continuous_transformer = Pipeline(steps=[('imputer', SimpleImputer(strategy='most_frequent')), # 用众数填充缺失值 (复现你的原始逻辑)('scaler', StandardScaler()) # 标准化,一个好的实践 (如果你严格复刻原代码,可以移除这步)
])
print("连续特征处理 Pipeline 定义完成。")
# --- 构建 ColumnTransformer ---
# 将不同的预处理应用于不同的列子集,构造一个完备的转化器
# ColumnTransformer 接收一个 transformers 列表,每个元素是 (名称, 转换器对象, 列名列表)
preprocessor = ColumnTransformer(transformers=[('ordinal', ordinal_transformer, ordinal_features), # 对 ordinal_features 列应用 ordinal_transformer('nominal', nominal_transformer, nominal_features), # 对 nominal_features 列应用 nominal_transformer('continuous', continuous_transformer, continuous_features) # 对 continuous_features 列应用 continuous_transformer],remainder='passthrough' # 如何处理没有在上面列表中指定的列。# 'passthrough' 表示保留这些列,不做任何处理。# 'drop' 表示丢弃这些列。
)print("\nColumnTransformer (预处理器) 定义完成。")
# print(preprocessor) # 可以打印 preprocessor 对象看看它的结构
构建完整pipeline
# --- 构建完整的 Pipeline ---
# 将预处理器和模型串联起来
# 使用你原代码中 RandomForestClassifier 的默认参数和 random_state
pipeline = Pipeline(steps=[('preprocessor', preprocessor), # 第一步:应用所有的预处理 (我们刚刚定义的 ColumnTransformer 对象)('classifier', RandomForestClassifier(random_state=42)) # 第二步:随机森林分类器 (使用默认参数和指定的 random_state)
])print("\n完整的 Pipeline 定义完成。")
# print(pipeline) # 可以打印 pipeline 对象看看它的结构
使用 Pipeline 进行训练和评估
# --- 1. 使用 Pipeline 在划分好的训练集和测试集上评估 ---
# 完全模仿你原代码的第一个评估步骤print("\n--- 1. 默认参数随机森林 (训练集 -> 测试集) ---") # 使用你原代码的输出文本
# import time # 引入 time 库 (已在文件顶部引入)start_time = time.time() # 记录开始时间# 在原始的 X_train, y_train 上拟合整个Pipeline
# Pipeline会自动按顺序执行 preprocessor 的 fit_transform(X_train),
# 然后用处理后的数据和 y_train 拟合 classifier
pipeline.fit(X_train, y_train)# 在原始的 X_test 上进行预测
# Pipeline会自动按顺序执行 preprocessor 的 transform(X_test),
# 然后用处理后的数据进行 classifier 的 predict
pipeline_pred = pipeline.predict(X_test)end_time = time.time() # 记录结束时间print(f"训练与预测耗时: {end_time - start_time:.4f} 秒") # 使用你原代码的输出格式print("\n默认随机森林 在测试集上的分类报告:") # 使用你原代码的输出文本
print(classification_report(y_test, pipeline_pred))
print("默认随机森林 在测试集上的混淆矩阵:") # 使用你原代码的输出文本
print(confusion_matrix(y_test, pipeline_pred))

@浙大疏锦行

http://www.xdnf.cn/news/5918.html

相关文章:

  • Java jar包程序 启动停止脚本 shell bash
  • 数据分析预备篇---Pandas的Series
  • Easysearch 时序数据的基于时间范围的合并策略
  • 软考软件测评师——计算机网络
  • MySQL历史版本下载及安装配置教程
  • GPT 经验
  • javax.servlet.Filter 介绍-笔记
  • 数字经济发展对“一带一路”地区农产品贸易效率的影响:基于空间溢出效应的视角
  • 数据分析文章目录
  • PyTorch的dataloader制作自定义数据集
  • 机器学习之决策树与决策森林:机器学习中的强大工具
  • Matlab基于SSA-MVMD麻雀算法优化多元变分模态分解
  • [特殊字符]CentOS 7.6 安装 JDK 11(适配国内服务器环境)
  • 【华为】现场配置OSPF
  • Axure应用交互设计:表格跟随菜单移动效果(超长表单)
  • 软件的价值维度
  • GraspVLA:基于Billion-级合成动作数据预训练的抓取基础模型
  • DIFY教程第七弹:Echarts可视化助手生成图表
  • 按键精灵ios脚本新增元素功能助力辅助工具开发(三)
  • 五大静态博客框架对比:Hugo、Hexo、VuePress、MkDocs、Jekyll
  • Node.js中的洋葱模型
  • Linux架构篇、第五章git2.49.0部署与使用
  • 部署安装git-2.49.0.tar.xz
  • 市政务服务技能竞赛流程策划方案
  • 大模型—— FastGPT 知识库无缝集成到 n8n 工作流 (基于 MCP 协议)
  • 正点原子T80烙铁拆解学习
  • el-select 结合 el-tree:树形下拉数据
  • 为什么 import _ “github.com/go-sql-driver/mysql“ 要导入但不使用?_ 是什么意思?
  • SLAM论文——简析Cartographer
  • flinksql实践(从kafka读数据)