当前位置: 首页 > web >正文

模型的存储、加载和部署

定义损失函数并以此训练和评估模型

存储模型可以只存储state_dict或模型参数,每当需要部署经过训练的模型时,创建模型的对象并从文件中加载参数,这是 Pytorch 创建者推荐的方法。

目录

模型的存储、加载

模型的部署


模型的存储、加载

承接上文,完成模型的训练后,需要将训练的参数存储在文件中,以供部署和使用。

#定义路径
path2weights="./models/weights.pt"
#将state_dict存储到文件
torch.save(model.state_dict(), path2weights)

为了从文件中加载模型参数,定义一个 Net 的对象类并加载state_dict

#定义随机初始权重模型
_model = Net()
#加载文件中的state_dict
weights=torch.load(path2weights)
#赋予权重
_model.load_state_dict(weights)

加载成功如下 

模型的部署

将模型加载到内存中后,可以将新数据传递给模型

import matplotlib.pyplot as plt
#抽取一个n=10张量
n=10
x= x_val[n]
y=y_val[n]
print(x.shape)
plt.imshow(x.numpy()[0],cmap="gray")

对张量进行预处理

#将维度扩展为 1*C*H*W
x= x.unsqueeze(0)
#转换为torch.float32格式
x=x.type(torch.float)

得到模型预测 

#获取模型输出
output=_model(x)
#获取预测结果
pred = output.argmax(dim=1, keepdim=True)
print (pred.item(),y.item())

 

http://www.xdnf.cn/news/16288.html

相关文章:

  • RCLAMP0512TQTCT 升特半导体 TVS二极管 12通道全防护芯片 以太网/PLC控制/5G基站专用
  • 微信通话自动录音器
  • 复矩阵与共轭转置矩阵乘积及其平方根矩阵
  • 基于xxl-job的分片实现分库分表后的扫表
  • MySQL深度理解-MySQL事务优化
  • 深度分析Java类加载机制
  • 智能小e-同步说明文档
  • 力扣189:轮转数组
  • 基于springboot的工商局商家管理系统
  • 如何解决pip安装报错ModuleNotFoundError: No module named ‘notebook’问题
  • 电子书转PDF格式教程,实现epub转PDF步骤
  • SGLang + 分布式推理部署DeepSeek671B满血版
  • Edwards爱德华泵软件 支持nEXT85和nXDS系列泵,包括nXRi, nRVi和nXLi增强型 nEXT nXDS nXLi
  • YOLO11有效涨点优化:注意力魔改 | 新颖的多尺度卷积注意力(MSCA),即插即用,助力小目标检测
  • 工具分享02 | Python批量文件重命名工具
  • 从零用java实现 小红书 springboot vue uniapp(14) 集成阿里云短信验证码
  • 核心数据结构:DataFrame
  • 征服 Linux 网络:核心服务与实战解析
  • 从指标定义到AI执行流:衡石SENSE 6.0的BI PaaS如何重构ISV分析链路
  • day46.通道注意力
  • jina-embedding-v4 环境搭建全过程
  • 实验-OSPF
  • 智能Agent场景实战指南 Day 20:Agent多模态交互能力
  • Windows 系统中 CURL 命令使用指南及常见错误解析
  • ai存在意义的对话
  • Unity UI的未来之路:从UGUI到UI Toolkit的架构演进与特性剖析(3)
  • UFS 描述符、标志和属性(二)
  • Java进阶3:Java集合框架、ArrayList、LinkedList、HashSet、HashMap和他们的迭代器
  • 外企本土化布局对国内连接器企业影响几何?
  • IO密集型、CPU密集型、负载、负载均衡