当前位置: 首页 > web >正文

深度学习——简介

一、概念

深度学习是机器学习算法的分支;人工神经网络为结果,实现自动提取数据特征的算法。

所有深度学习都是机器学习,但并非所有机器学习都是深度学习。

在深度学习的过程中,每一层神经网络都对输入数据进行处理,从而学习到数据中的特征和模式。

深度学习的关键之一是“反向传播”算法,它通过计算损失函数(即实际输出与期望输出之间的差异)并将这种误差反馈回网络的每一层,来调整每层的权重。

深度学习的一个重要的概念是“特征学习”,这意味着深度学习模型能够自动发现和利用数据中的有用特征,而无需人工介入。

深度学习的成功依赖于大量的数据和强大的计算能力。

二、深度学习的优缺点

优点:

1.自动提取特征:省去人工设计特征,适合图像、语音等复杂数据。

2.高精度:在大数据任务(如CV、NLP)中表现优异。

3.端到端学习:直接从数据到结果,简化流程。

4.适应性强:新模型(如Transformer)不断优化性能。

缺点:

1.依赖大数据:小样本场景容易过拟合。

2.计算成本高:训练需要GPU/TPU,部署难。

3.黑盒模型:决策难解释,影响可信度。

4.调参复杂:超参数优化依赖经验。

5.安全风险:对抗攻击,数据偏见问题突出。

适用于大数据、高复杂度任务;不适用小数据、需高解释性或低功耗设备。

三、深度学习发展史(部分)

1943: 沃尔特·皮茨(Walter Pitts)和沃伦·麦卡洛克(Warren McCulloch)提出了McCulloch-Pitts神经元模型,这是人工神经网络领域的开创性工作之一。

1956: 美国达特茅斯学院的约翰·麦卡锡、马文·闵斯基、克劳德·香农和纳撒尼尔·罗切斯特等人发起达特茅斯会议,首次提出了“人工智能”这一术语,并确立了研究目标和方向。

1957:弗兰克·罗森布拉特(Frank Rosenblatt)提出单层感知器概念,使用随机梯度下降(的雏形)进行权重更新。

1960年代末:出现了多层感知器(MLP),输入层、隐藏层、输出层的结构被提出,反向传播算法(BP)尚未成熟(直到1986年才由Rumelhart等人明确推广)。

1986:David Rumelhart等人发表了关于反向传播(BackPropagation, BP)算法的研究成果,使得多层神经网络能够通过梯度下降优化参数,解决复杂的非线性问题。

2012:亚历克斯·克里泽夫斯基(Alex Krizhevsky)等人设计的卷积神经网络(CNN)AlexNet模型在ImageNet图像识别挑战赛中取得巨大成功。大规模图像识别任务中的强大能力,引爆了深度学习革命。

2022 年:  chatGPT的出现,进入到大模型AIGC发展的阶段。

四、算法/模型

包含:ANN人工神经网络、CNN 卷积神经网络、RNN 循环神经网络、transformer、生成对抗网络、BERT、GPT......

五、应用场景

自然语言处理 nlp:聊天机器人、语音翻译......

计算机视觉 CV:图像识别、目标检测......

推荐系统:电商推荐、电影/音乐/文章/推荐......

多模态大模型......

http://www.xdnf.cn/news/13342.html

相关文章:

  • Ubuntu下挂载NTFS格式磁盘
  • 访问服务器项目,服务器可以ping通,但是端口访问不到
  • C++ mutex 锁的使用
  • JavaScript BOM 详细介绍
  • 重温经典算法——二分查找
  • 借助AI识别测试盲区:从需求文档中挖掘遗漏场景
  • CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
  • 深度学习:概念、特点和发展史
  • Admin.Net中的消息通信SignalR解释
  • 基于OpenCV的风格迁移:图像金字塔方法
  • jupyterhub的浅浅使用-重点在解决无法登录
  • GD32-开发工程搭建
  • 超短脉冲激光自聚焦效应
  • 人脸识别技术应用备案找不找第三方
  • CppCon 2015 学习:Practical Move Semantics
  • SpringBoot+Vue+MySQL全栈开发实战:前后端接口对接与数据存储详解
  • 【算法篇】逐步理解动态规划模型5(子序列问题)
  • 隐藏wordpress后台登陆地址 让wordpress网站更安全
  • 【VBA】使用脚本把doc/docx转换为pdf格式
  • 消息消费类型和具体实现
  • nsswitch.conf配置文件内容解析
  • 生产安全与设备管理如何分清界限?如何正确用设备管理系统?
  • 微机原理与接口技术,期末冲刺复习资料(五)
  • 3.1 数据链路层的功能
  • 商品中心—2.商品生命周期和状态的技术文档
  • HTML 、CSS 、JavaScript基本简单介绍
  • 大型活动交通拥堵治理的视觉算法应用
  • ceph集群调整pg数量实战(下)
  • 【如何用Python调用DeepSeek的API接口?】
  • JavaSec-RCE