当前位置: 首页 > web >正文

打卡Day44

一、预训练的概念

我们之前在训练中发现,准确率最开始随着epoch的增加而增加。随着循环的更新,参数在不断发生更新。

所以参数的初始值对训练结果有很大的影响:

  1. 如果最开始的初始值比较好,后续训练轮数就会少很多
  2. 很有可能陷入局部最优值,不同的初始值可能导致陷入不同的局部最优值
    所以很自然的想到,如果最开始能有比较好的参数,即可能导致未来训练次数少,也可能导致未来训练避免陷入局部最优解的问题。这就引入了一个概念,即预训练模型。

如果别人在某些和我们目标数据类似的大规模数据集上做过训练,我们可以用他的训练参数来初始化我们的模型,这样我们的模型就比较容易收敛。

现在再来看下之前一直用的cifar10数据集,他是不是就很明显不适合作为预训练数据集?

  1. 规模过小:仅 10 万张图像,且尺寸小(32x32),无法支撑复杂模型学习通用视觉特征;
  2. 类别单一:仅 10 类(飞机、汽车等),泛化能力有限;

二、 经典的预训练模型

2.1 CNN架构预训练模型

模型预训练数据集核心特点在CIFAR10上的适配要点
AlexNetImageNet首次引入ReLU/局部响应归一化,参数量6000万+需修改首层卷积核大小(原11x11→适配32x32)
VGG16ImageNet纯卷积堆叠,结构统一,参数量1.38亿冻结前10层卷积,仅微调全连接层
ResNet18ImageNet残差连接解决梯度消失,参数量1100万直接适配32x32输入,需调整池化层步长
MobileNetV2ImageNet深度可分离卷积,参数量350万+轻量级设计,适合计算资源有限的场景

2.2 Transformer类预训练模型

适用于较大尺图像(如224x224),在CIFAR10上需上采样图像尺寸调整Patch大小

模型预训练数据集核心特点在CIFAR10上的适配要点
ViT-BaseImageNet-21K纯Transformer架构,参数量8600万图像Resize至224x224,Patch大小设为4x4
Swin TransformerImageNet-22K分层窗口注意力,参数量8000万+需调整窗口大小适配小图像
DeiTImageNet结合CNN归纳偏置,参数量2200万轻量级Transformer,适合中小尺寸图像

2.3 自监督预训练模型

无需人工标注,通过 pretext task(如掩码图像重建)学习特征,适合数据稀缺场景。

模型预训练方式典型数据集在CIFAR10上的优势
MoCo v3对比学习ImageNet无需标签即可迁移,适合无标注数据
BEiT掩码图像建模ImageNet-22K特征语义丰富,微调时收敛更快

三、常见的分类预训练模型介绍

模型年份提出团队关键创新点层数参数量ImageNet Top-5错误率典型应用场景预训练权重可用性
LeNet-51998Yann LeCun等首个CNN架构,卷积层+池化层+全连接层,Sigmoid激活函数7~60KN/A手写数字识别(MNIST)无(历史模型)
AlexNet2012Alex Krizhevsky等ReLU激活函数、Dropout、数据增强、GPU训练860M15.3%大规模图像分类PyTorch/TensorFlow官方支持
VGGNet2014Oxford VGG团队统一3×3卷积核、多尺度特征提取、结构简洁16/19138M/144M7.3%/7.0%图像分类、目标检测基础骨干网络PyTorch/TensorFlow官方支持
GoogLeNet2014GoogleInception模块(多分支并行卷积)、1×1卷积降维、全局平均池化225M6.7%大规模图像分类PyTorch/TensorFlow官方支持
ResNet2015何恺明等残差连接(解决梯度消失)、Batch Normalization18/50/15211M/25M/60M3.57%/3.63%/3.58%图像/视频分类、检测、分割PyTorch/TensorFlow官方支持
DenseNet2017Gao Huang等密集连接(每层与后续所有层相连)、特征复用、参数效率高121/1698M/14M2.80%小数据集、医学图像处理PyTorch/TensorFlow官方支持
MobileNet2017Google深度可分离卷积(减少75%计算量)、轻量级设计284.2M7.4%移动端图像分类/检测PyTorch/TensorFlow官方支持
EfficientNet2019Google复合缩放(同时优化深度、宽度、分辨率)、NAS搜索最佳配置B0-B75.3M-66M2.6% (B7)高精度图像分类(资源受限场景)PyTorch/TensorFlow官方支持

上图的层数,代表该模型不同的版本resnet有resnet18、resnet50、resnet152;efficientnet有efficientnet-b0、efficientnet-b1、efficientnet-b2、efficientnet-b3、efficientnet-b4等

其中ImageNet Top - 5 准确率是图像分类任务里的一种评估指标 ,用于衡量模型在 ImageNet 数据集上的分类性能,模型对图像进行分类预测,输出所有类别(共 1000 类 )的概率,取概率排名前五的类别,只要这五个类别里包含人工标注的正确类别,就算预测正确。

模型架构演进关键点总结

  1. 深度突破:从LeNet的7层到ResNet152的152层,残差连接解决了深度网络的训练难题。 ----没上过我复试班cv部分的自行去了解下什么叫做残差连接,很重要!
  2. 计算效率:GoogLeNet(Inception)和MobileNet通过结构优化,在保持精度的同时大幅降低参数量。
  3. 特征复用:DenseNet的密集连接设计使模型能更好地利用浅层特征,适合小数据集。
  4. 自动化设计:EfficientNet使用神经架构搜索(NAS)自动寻找最优网络配置,开创了AutoML在CNN中的应用。

预训练模型使用建议

任务需求推荐模型理由
快速原型开发ResNet50/18结构平衡,预训练权重稳定,社区支持完善
移动端部署MobileNetV3参数量小,计算高效,专为移动设备优化
高精度分类(资源充足)EfficientNet-B7目前ImageNet准确率领先,适合GPU/TPU环境
小数据集或特征复用需求DenseNet密集连接设计减少过拟合,特征复用能力强
多尺度特征提取Inception-ResNet结合Inception多分支和ResNet残差连接,适合复杂场景

这些模型的预训练权重均可通过主流框架(如PyTorch的torchvision.models、Keras的applications模块)直接加载,便于快速迁移到新任务。
ResNet模型代码示例

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器(可调整batch_size)
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 训练函数(支持学习率调度器)
def train(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs):model.train()  # 设置为训练模式train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []for epoch in range(epochs):running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 5. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('训练过程中的Iteration损失变化')plt.grid(True)plt.show()# 6. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('准确率随Epoch变化')plt.legend()plt.grid(True)# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('损失值随Epoch变化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()
# 导入ResNet模型
from torchvision.models import resnet18# 定义ResNet18模型(支持预训练权重加载)
def create_resnet18(pretrained=True, num_classes=10):# 加载预训练模型(ImageNet权重)model = resnet18(pretrained=pretrained)# 修改最后一层全连接层,适配CIFAR-10的10分类任务in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)# 将模型转移到指定设备(CPU/GPU)model = model.to(device)return model
# 创建ResNet18模型(加载ImageNet预训练权重,不进行微调)
model = create_resnet18(pretrained=True, num_classes=10)
model.eval()  # 设置为推理模式# 测试单张图片(示例)
from torchvision import utils# 从测试数据集中获取一张图片
# dataiter = iter(test_loader)
# images, labels = dataiter.next()
# images = images[:1].to(device)  # 取第1张图片
# 从测试数据集中获取一张图片
dataiter = iter(test_loader)
images, labels = next(dataiter)  # 修改这里 
#- 在PyTorch 1.0+版本中, DataLoader 迭代器移除了 .next() 方法
#- 现在需要使用Python标准库的 next() 函数来获取下一批数据
#- 这是为了保持与Python迭代器协议的一致性
images = images[:1].to(device)  # 取第1张图片# 前向传播
with torch.no_grad():outputs = model(images)_, predicted = torch.max(outputs.data, 1)# 显示图片和预测结果
plt.imshow(utils.make_grid(images.cpu(), normalize=True).permute(1, 2, 0))
plt.title(f"预测类别: {predicted.item()}")
plt.axis('off')
plt.show()
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms, models
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import os# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 1. 数据预处理(训练集增强,测试集标准化)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 2. 加载CIFAR-10数据集
train_dataset = datasets.CIFAR10(root='./data',train=True,download=True,transform=train_transform
)test_dataset = datasets.CIFAR10(root='./data',train=False,transform=test_transform
)# 3. 创建数据加载器
batch_size = 64
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)# 4. 定义ResNet18模型
def create_resnet18(pretrained=True, num_classes=10):model = models.resnet18(pretrained=pretrained)# 修改最后一层全连接层in_features = model.fc.in_featuresmodel.fc = nn.Linear(in_features, num_classes)return model.to(device)# 5. 冻结/解冻模型层的函数
def freeze_model(model, freeze=True):"""冻结或解冻模型的卷积层参数"""# 冻结/解冻除fc层外的所有参数for name, param in model.named_parameters():if 'fc' not in name:param.requires_grad = not freeze# 打印冻结状态frozen_params = sum(p.numel() for p in model.parameters() if not p.requires_grad)total_params = sum(p.numel() for p in model.parameters())if freeze:print(f"已冻结模型卷积层参数 ({frozen_params}/{total_params} 参数)")else:print(f"已解冻模型所有参数 ({total_params}/{total_params} 参数可训练)")return model# 6. 训练函数(支持阶段式训练)
def train_with_freeze_schedule(model, train_loader, test_loader, criterion, optimizer, scheduler, device, epochs, freeze_epochs=5):"""前freeze_epochs轮冻结卷积层,之后解冻所有层进行训练"""train_loss_history = []test_loss_history = []train_acc_history = []test_acc_history = []all_iter_losses = []iter_indices = []# 初始冻结卷积层if freeze_epochs > 0:model = freeze_model(model, freeze=True)for epoch in range(epochs):# 解冻控制:在指定轮次后解冻所有层if epoch == freeze_epochs:model = freeze_model(model, freeze=False)# 解冻后调整优化器(可选)optimizer.param_groups[0]['lr'] = 1e-4  # 降低学习率防止过拟合model.train()  # 设置为训练模式running_loss = 0.0correct_train = 0total_train = 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录Iteration损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append(epoch * len(train_loader) + batch_idx + 1)# 统计训练指标running_loss += iter_loss_, predicted = output.max(1)total_train += target.size(0)correct_train += predicted.eq(target).sum().item()# 每100批次打印进度if (batch_idx + 1) % 100 == 0:print(f"Epoch {epoch+1}/{epochs} | Batch {batch_idx+1}/{len(train_loader)} "f"| 单Batch损失: {iter_loss:.4f}")# 计算 epoch 级指标epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct_train / total_train# 测试阶段model.eval()correct_test = 0total_test = 0test_loss = 0.0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_test# 记录历史数据train_loss_history.append(epoch_train_loss)test_loss_history.append(epoch_test_loss)train_acc_history.append(epoch_train_acc)test_acc_history.append(epoch_test_acc)# 更新学习率调度器if scheduler is not None:scheduler.step(epoch_test_loss)# 打印 epoch 结果print(f"Epoch {epoch+1} 完成 | 训练损失: {epoch_train_loss:.4f} "f"| 训练准确率: {epoch_train_acc:.2f}% | 测试准确率: {epoch_test_acc:.2f}%")# 绘制损失和准确率曲线plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc  # 返回最终测试准确率# 7. 绘制Iteration损失曲线
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7)plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('训练过程中的Iteration损失变化')plt.grid(True)plt.show()# 8. 绘制Epoch级指标曲线
def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 5))# 准确率曲线plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('准确率随Epoch变化')plt.legend()plt.grid(True)# 损失曲线plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('损失值随Epoch变化')plt.legend()plt.grid(True)plt.tight_layout()plt.show()# 主函数:训练模型
def main():# 参数设置epochs = 40  # 总训练轮次freeze_epochs = 5  # 冻结卷积层的轮次learning_rate = 1e-3  # 初始学习率weight_decay = 1e-4  # 权重衰减# 创建ResNet18模型(加载预训练权重)model = create_resnet18(pretrained=True, num_classes=10)# 定义优化器和损失函数optimizer = optim.Adam(model.parameters(), lr=learning_rate, weight_decay=weight_decay)criterion = nn.CrossEntropyLoss()# 定义学习率调度器scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.5, patience=2)# 开始训练(前5轮冻结卷积层,之后解冻)final_accuracy = train_with_freeze_schedule(model=model,train_loader=train_loader,test_loader=test_loader,criterion=criterion,optimizer=optimizer,scheduler=scheduler,device=device,epochs=epochs,freeze_epochs=freeze_epochs)print(f"训练完成!最终测试准确率: {final_accuracy:.2f}%")# # 保存模型# torch.save(model.state_dict(), 'resnet18_cifar10_finetuned.pth')# print("模型已保存至: resnet18_cifar10_finetuned.pth")if __name__ == "__main__":main()
http://www.xdnf.cn/news/11989.html

相关文章:

  • Python 解释器安装全攻略(适用于 Linux / Windows / macOS)
  • 【PmHub面试篇】PmHub 整合 TransmittableThreadLocal(TTL)缓存用户数据面试专题解析
  • MySQL 5.6 Root密码修改完整流程
  • video-audio-extractor:视频转换为音频
  • Spring Boot应用开发实战
  • el-amap-bezier-curve运用及线弧度设置
  • 圣杯布局和双飞翼布局
  • Linux容器篇、第一章docker命令总结表
  • 【仿生】硬件缺失,与组装调试,皮肤问题
  • 第七十三篇 从电影院售票到停车场计数:生活场景解析Java原子类精髓
  • 如何搭建Z-Blog PHP版本:详细指南
  • pytorch 与 张量的处理
  • Neo4j 监控全解析:原理、技术、技巧与最佳实践
  • Neo4j 认证与授权:原理、技术与最佳实践深度解析
  • Elasticsearch中的语义搜索(Semantic Search)介绍
  • Axure 下拉框联动
  • Hive终极性能优化指南:从原理到实战
  • MySql安装、卸载(保姆级流程)
  • MCP客户端Client开发流程
  • python第42天打卡
  • html2canvas v1.0.0-alpha.12版本文本重叠问题修复
  • 基于LangChain构建高效RAG问答系统:向量检索与LLM集成实战
  • 泛微E8多行文本(textarea)赋值
  • 法律AI的“幻觉”治理:大模型如何重塑司法公正与效率
  • 基于 ShardingSphere + Seata 的最终一致性事务完整示例实现
  • nlohmann/json简介及使用
  • kubespere使用中遇到的问题
  • Elasticsearch的审计日志(Audit Logging)介绍
  • 若依Ruoyi中优先从本地文件加载静态资源
  • 42、响应处理-【源码分析】-浏览器与PostMan内容协商完全适配