当前位置: 首页 > ops >正文

大语言模型 24 - MCP 自动操作 提高模型上下文能力 Cursor + Sequential Thinking Server Memory

点一下关注吧!!!非常感谢!!持续更新!!!

Java篇:

  • MyBatis 更新完毕
  • 目前开始更新 Spring,一起深入浅出!

大数据篇 300+:

  • Hadoop(已更完)
  • HDFS(已更完)
  • MapReduce(已更完)
  • Hive(已更完)
  • Flume(已更完)
  • Sqoop(已更完)
  • Zookeeper(已更完)
  • HBase(已更完)
  • Redis (已更完)
  • Kafka(已更完)
  • Spark(已更完)
  • Flink(已更完)
  • ClickHouse(已更完)
  • Kudu(已更完)
  • Druid(已更完)
  • Kylin(已更完)
  • Elasticsearch(已更完)
  • DataX(已更完)
  • Tez(已更完)
  • 数据挖掘(已更完)
  • Prometheus(已更完)
  • Grafana(已更完)
  • 离线数仓(已更完)
  • 实时数仓(正在更新…)
  • Spark MLib (正在更新…)

背景情况

在以往的开发任务中,我们发现随着项目规模的扩大,AI 模型容易出现“前后不一致”的问题:它在处理后续逻辑时,常常遗忘前面的上下文,从而引发新的 Bug。
本质上,这是因为模型的上下文窗口存在限制。早期 GPT-4 仅支持 4K 上下文,后来 GPT-4 Turbo 提升到了 128K,而如今部分前沿模型已支持高达 1M 的上下文长度。
当前,行业内的技术演进主要集中在两个方向:一是不断扩展上下文长度,二是持续增加模型参数量。但无论上下文有多大,总会有装不下的内容;即便模型参数再庞大,也依然可能生成不准确、不连贯的结果。
因此,为了解决这一类“遗忘”问题,社区逐步发展出一系列策略:从扩大上下文窗口,到引入 RAG(Retrieval-Augmented Generation)与摘要机制;从 Step-by-Step 的逐步推理,到 Chain-of-Thought(思维链)等更复杂的推理结构。这些方法的共同目标,都是延长模型的思考过程、缓存关键信息,以对抗其作为概率模型带来的推理局限。
恰巧在上周的分享会上,有人提到在 AI 协助开发的过程中,经常会遇到“遗忘”或“执行偏差”的问题。我当时也简单分享了几个应对思路。借这个机会,顺便整理一下目前社区中较为标准的解决方案。

Sequential Thinking

项目地址

https://github.com/modelcontextprotocol/servers/tree/main/src/sequentialthinking

能够将复杂的问题拆分成一个个可管理的小步骤,让 AI 可以逐步进行分析和处理。例如,在处理一个复杂的编程任务时,它会把任务分解为多个子任务,如先确定算法框架,再处理数据输入输出,最后进行代码优化等。

配置方式

MCP的配置方式老生常谈了,全部略过。

npx -y @modelcontextprotocol/server-sequential-thinking

JSON内容如下:

{"mcpServers": {"SequentialThinking": {"command": "npx","args": ["-y", "@modelcontextprotocol/server-sequential-thinking"]    }}   
}

配置结果如下:
在这里插入图片描述
确保Cursor中的状态是正常的:

在这里插入图片描述

使用方式

对于一些复杂问题,可以使用Sequential Thinking服务,将复杂问题分解为小的问题,逐个解决。同时每调用一次,都可以从thought中获取到LLM当前的思考过程以及采取的方法,有时还会提供多种方案,我们可以通过再次提问,实现对于方案的选取以及之前思考过程的调整。

请你使用思考能力,完成XXXXXXX的任务。

这样会调用 Sequential Thinking,对任务进行详细的拆解,避免出现比如:“实现一个购物系统”,这样宽泛的需求而大模型无法理解的问题。

Server Memory

项目地址

https://github.com/modelcontextprotocol/servers/tree/main/src/memory

能够让 AI 记住之前的信息和交互内容,在处理后续任务时可以调用这些记忆,从而更连贯地进行分析和处理。例如,在进行多轮对话的编程对话时,AI 可以记住之前用户提出的代码问题和已解决的部分,在后续交流中基于这些记忆给出更合适的建议和指导。

配置方式

MCP配置略过

npx -y @modelcontextprotocol/server-memory

一般都是将思考和记忆放到一起使用,对应的JSON如下:

{"mcpServers": {"SequentialThinking": {"command": "npx","args": ["-y", "@modelcontextprotocol/server-sequential-thinking"]    },"ServerMemory": {"command": "npx","args": ["-y", "@modelcontextprotocol/server-memory"]}}
}

配置完的结果如下:
在这里插入图片描述

使用方式

对于一些需要多轮交互且依赖之前信息的复杂问题,可以使用 Server Memory 服务。比如在进行项目需求分析时,用户不断补充和修改需求,AI 能够记住之前的需求内容,在后续分析中综合考虑,给出更全面准确的分析结果。

随便测试一个结果:
在这里插入图片描述

可以看到思考完成后,会进行缓存:
在这里插入图片描述

http://www.xdnf.cn/news/9976.html

相关文章:

  • 云游戏混合架构
  • 【机械视觉】Halcon—【六、交集并集差集和仿射变换】
  • AI Agent开发入门笔记(1)
  • C++ 实现 std::move_only_function
  • DeepSeek R1 模型小版本升级,DeepSeek-R1-0528都更新了哪些新特性?
  • UniDream AI绘画——让想象力,无界绽放
  • 可定制化货代管理系统,适应不同业务模式需求!
  • 智能改变一切:当技术革命遇见人类文明
  • OpenCV---pointPolygonTest
  • 【实例】事业单位学习平台自动化操作
  • 【Web应用】若依框架:基础篇12 项目结构
  • DeepSeek 赋能文化遗产数字化修复:AI 重构千年文明密码
  • 如何从ISO镜像直接制作Docker容器基础镜像
  • 明场检测与暗场检测的原理
  • Excel 中的SUMIFS用法(基础版),重复项求和
  • 基于SpringBoot的商家销售管理网站的设计与实现
  • 第二章 2.1 数据存储安全风险之数据存储风险点
  • Java类和对象详解
  • RS232转Profinet网关在检漏仪与西门子PLC里的应用
  • 前端流式接收数据讲解
  • 万兴PDF手机版
  • audit日志轮训保留180天的日志,按天保存
  • C++17原生测试编程实践:现代特性与分支覆盖指南
  • 大疆上云API+流媒体服务器部署实现直播功能
  • 基于粒子滤波的PSK信号解调实现
  • new和delete的理解
  • ESP8266远程控制:实现网络通信与设备控制
  • 编程之巅:语言的较量
  • for(auto a:b)和for(auto a:b)的区别
  • Nginx Lua模块(OpenResty)实战:动态化、智能化你的Nginx,实现复杂Web逻辑 (2025)