当前位置: 首页 > ops >正文

基于OpenCV的SIFT特征和FLANN匹配器的指纹认证

文章目录

    • 引言
    • 一、概述
    • 二、代码解析
      • 1. 图像显示函数
      • 2. 核心认证函数
      • 3. 匹配点筛选
      • 4. 认证判断
    • 三、主程序
    • 四、技术要点
    • 五、总结

引言

在计算机视觉领域,图像特征匹配是一个非常重要的技术,广泛应用于物体识别、图像拼接、运动跟踪等场景。今天将介绍一个基于SIFT特征提取FLANN匹配器的指纹认证系统的实现方法。

一、概述

这个指纹认证系统主要通过比较源指纹图像和模板指纹图像的特征点匹配数量来判断是否认证通过。系统使用SIFT算法提取图像特征点,然后通过FLANN匹配器进行快速近似最近邻搜索,最后根据匹配点数量决定认证结果。

二、代码解析

1. 图像显示函数

def cv_show(name,img):cv2.imshow(name,img)cv2.waitKey(0)

这是一个简单的图像显示函数,接收窗口名称和图像作为参数,显示图像直到用户按下任意键。

2. 核心认证函数

def verfication(src,model):# 创建SIFT特征提取器sift = cv2.SIFT_create()# 检测关键点和计算描述符(特征向量)源图像kp1,des1 = sift.detectAndCompute(src,None)  #第二个参数:掩膜# 检测关键点和计算描述符 模板图像kp2,des2 = sift.detectAndCompute(model,None)# 创建FLANN匹配器flann = cv2.FlannBasedMatcher()# 使用 K 近邻匹配matches = flann.knnMatch(des1,des2,k=2)

这段代码是图像特征匹配的核心部分,主要用于提取图像特征并进行初步匹配。下面我将详细解释每一部分的功能和原理:

  1. 创建SIFT特征提取器
sift = cv2.SIFT_create()
  • SIFT (Scale-Invariant Feature Transform) 是一种尺度不变特征变换算法
  • cv2.SIFT_create() 创建了一个SIFT特征检测器和描述符生成器
  • SIFT能够检测图像中的关键点并计算这些关键点的特征描述符
  1. 检测关键点和计算描述符(源图像)
kp1, des1 = sift.detectAndCompute(src, None)
  • detectAndCompute() 方法同时执行两个操作:
    • 检测图像中的关键点(keypoints)
    • 计算这些关键点的描述符(descriptors)
  • 参数说明:
    • src: 输入的源图像(待认证的指纹图像)
    • None: 可选的掩膜参数,这里不使用
  • 返回值:
    • kp1: 检测到的关键点列表,每个关键点包含位置、尺度、方向等信息
    • des1: 关键点的描述符矩阵,每个描述符是一个128维的向量
  1. 检测关键点和计算描述符(模板图像)
kp2, des2 = sift.detectAndCompute(model, None)
  • 同样的操作应用于模板图像(model)
  • 得到模板图像的关键点kp2和描述符des2

4. 创建FLANN匹配器

flann = cv2.FlannBasedMatcher()
  • FLANN (Fast Library for Approximate Nearest Neighbors) 是一个快速近似最近邻搜索库
  • 相比暴力匹配(Brute-Force),FLANN在大规模数据集中匹配效率更高
  • cv2.FlannBasedMatcher() 创建了一个FLANN匹配器对象
  1. 使用K近邻匹配
matches = flann.knnMatch(des1, des2, k=2)
  • knnMatch() 执行K近邻匹配:
    • 对于des1中的每个描述符,在des2中寻找最相似的k个描述符
    • 这里设置k=2,即寻找每个源特征点在模板图像中的2个最近邻匹配
  • 返回的matches是一个列表,其中每个元素包含:
    • 两个最佳匹配对象(DMatch)
    • 每个DMatch对象包含:
      • distance: 两个描述符之间的距离(相似度)
      • queryIdx: 源图像描述符的索引
      • trainIdx: 模板图像描述符的索引

整体流程理解

  1. 特征提取:从两幅图像中提取稳定的、具有区分性的局部特征
  2. 特征匹配:在特征空间中寻找相似的特征点对
  3. 后续处理:通过比率测试筛选优质匹配(代码中接下来的部分)

3. 匹配点筛选

    ok = []for m,n in matches:# 根据lowe's比率测试,选择最佳匹配if m.distance < 0.8 * n.distance:ok.append(m)

这里使用了Lowe’s比率测试来筛选优质的匹配点,只有当第一个匹配的距离小于第二个匹配距离的0.8倍时,才认为是一个好的匹配。

4. 认证判断

    # 统计通过筛选的匹配数量num = len(ok)if num >= 500:result = "认证通过"else:result = "认证失败"return result

如果优质匹配点数量超过500个,则认为认证通过,否则认证失败。

三、主程序

if __name__ == "__main__":src1 = cv2.imread("zhiwen_1.bmp")cv_show('zhiwen_1',src1)src2 = cv2.imread("zhiwen_2.bmp")cv_show('zhiwen_2',src2)model = cv2.imread("model.bmp")cv_show('model',model)result1 = verfication(src1,model)result2 = verfication(src2,model)print("src1验证结果为:",result1)print("src2验证结果为:",result2)

主程序读取两个源指纹图像和一个模板图像,分别进行认证并输出结果。
代码运行结果如下:
在这里插入图片描述

四、技术要点

  1. SIFT特征:尺度不变特征变换,具有良好的尺度、旋转不变性,对光照变化也有一定鲁棒性。

  2. FLANN匹配器:快速近似最近邻搜索库,在大规模数据集中比暴力匹配更高效。

  3. Lowe’s比率测试:由David Lowe提出,用于消除不稳定的匹配点,提高匹配质量。

五、总结

本文介绍了一个基于SIFT和FLANN的简单指纹认证系统实现。通过特征点匹配数量来判断认证结果,虽然简单但体现了计算机视觉在生物识别中的应用。读者可以根据实际需求进一步优化和完善这个系统。

希望这篇博客对你有所帮助!如果有任何问题,欢迎在评论区留言讨论。

http://www.xdnf.cn/news/6930.html

相关文章:

  • 泛微对接金蝶云星空实战案例技术分享
  • C++:C++内存管理
  • DeerFlow试用
  • 一周学会Pandas2 Python数据处理与分析-Pandas2数据添加修改删除操作
  • 使用python进行人员轨迹跟踪
  • 打造动效按钮平台 ButtonCraft:我和 CodeBuddy 的协作旅程
  • Nginx应用场景详解与配置指南
  • 源码安装gperftools工具
  • AI Agent | Coze 插件使用指南:从功能解析到实操步骤
  • 湖北理元理律师事务所:债务优化中的双维支持实践解析
  • 【HCIA】聚合VLAN
  • 蓝牙HFP协议概述
  • 开源项目实战学习之YOLO11:12.1 ultralytics-models-sam-blocks.py源码
  • 【Spring】Spring的请求处理
  • Spring-boot初次使用
  • 2.单链表两数相加(java)
  • 记录算法笔记(2025.5.17)验证二叉搜索树
  • 题单:表达式求值1
  • LVGL- Calendar 日历控件
  • [YOLO模型](4)YOLO V3的介绍
  • 基于STM32_HAL库的SPI通信并驱动W25Q64存储模块
  • RK3588 MNN CPU/Vulkan/OpenCL ResNet50推理测试
  • FreeRTOS的学习记录(任务创建,任务挂起)
  • 【数据结构】_二叉树
  • MyBatis 核心组件源码分析
  • JS逆向-某易云音乐下载器
  • 安卓 Audio Stream 类型
  • 【找工作系列①】【大四毕业】【复习】巩固JavaScript,了解ES6。
  • 复旦微FMQL调试笔记:PS网口
  • 大模型学习:Deepseek+dify零成本部署本地运行实用教程(超级详细!建议收藏)