CF803G Periodic RMQ Problem Solution
Description
给定序列 b = ( b 1 , b 2 , ⋯ , b n ) b=(b_1,b_2,\cdots,b_n) b=(b1,b2,⋯,bn) 和常数 k k k,将 b b b 复制 k k k 份拼接可以得到序列 a a a.
执行 m m m 次操作,分为两种:
- assign ( l , r , x ) \operatorname{assign}(l,r,x) assign(l,r,x):对每个 i ∈ [ l , r ] i\in[l,r] i∈[l,r] 执行 a i ← x a_i\gets x ai←x.
- query ( l , r ) \operatorname{query}(l,r) query(l,r):求 min i = l r a i \min\limits_{i=l}^r a_i i=lminrai.
Limitations
1 ≤ n , m ≤ 1 0 5 1\le n,m\le 10^5 1≤n,m≤105
1 ≤ k ≤ 1 0 4 1\le k\le 10^4 1≤k≤104
1 ≤ b i , x ≤ 1 0 9 1\le b_i,x\le 10^9 1≤bi,x≤109
1 ≤ l ≤ r ≤ n k 1\le l\le r\le nk 1≤l≤r≤nk
4 s , 512 MB 4\text{s},512\text{MB} 4s,512MB
Solution
由于 n k nk nk 可达 1 0 9 10^9 109,所以无法直接建出线段树.
考虑动态开点,每个节点维护最小值 min \textit{min} min,标记 tag \textit{tag} tag.
在建节点时,需要查询 min i = l r a i \min\limits_{i=l}^r a_i i=lminrai,分情况考虑(假设下标从 0 0 0 开始):
- 若 ⌊ l n ⌋ = ⌊ r n ⌋ \lfloor \frac{l}{n}\rfloor=\lfloor \frac{r}{n}\rfloor ⌊nl⌋=⌊nr⌋,那么 [ l , r ] [l,r] [l,r] 在同一段 b b b 内,答案为 min i = l m o d n r m o d n b i \min\limits_{i=l\bmod n}^{r\bmod n} b_i i=lmodnminrmodnbi.
- 若 ⌊ l n ⌋ + 1 = ⌊ r n ⌋ \lfloor \frac{l}{n}\rfloor+1=\lfloor \frac{r}{n}\rfloor ⌊nl⌋+1=⌊nr⌋,那么 [ l , r ] [l,r] [l,r] 在相邻两段内,答案为 min ( min i = r m o d n n − 1 b i , min i = 1 l m o d n b i ) \min(\min\limits_{i=r\bmod n}^{n-1} b_i,\min\limits_{i=1}^{l\bmod n} b_i) min(i=rmodnminn−1bi,i=1minlmodnbi).
- 否则 [ l , r ] [l,r] [l,r] 跨越了一整段,答案为 min i = 0 n − 1 b i \min\limits_{i=0}^{n-1} b_i i=0minn−1bi.
为了不让复杂度退化,需要一个支持 O ( 1 ) O(1) O(1) RMQ
的数据结构,使用 ST
表即可,总时间复杂度 O ( q log n k ) O(q\log nk) O(qlognk).
如果用指针写线段树,注意结构体的所有变量都要初始化.
Code
3.4 KB , 1.39 s , 231.64 MB (maximum, C++20) 3.4\text{KB},1.39\text{s},231.64\text{MB}\;\texttt{(maximum, C++20)} 3.4KB,1.39s,231.64MB(maximum, C++20)
#include <bits/stdc++.h>
using namespace std;using i64 = long long;
using ui64 = unsigned long long;
using i128 = __int128;
using ui128 = unsigned __int128;
using f4 = float;
using f8 = double;
using f16 = long double;template<class T>
bool chmax(T &a, const T &b){if(a < b){ a = b; return true; }return false;
}template<class T>
bool chmin(T &a, const T &b){if(a > b){ a = b; return true; }return false;
}constexpr int inf = 2e9;
namespace seg_tree {struct Node {int l, r, min, tag;Node *ls, *rs;inline void pushup() { min = std::min(ls->min, rs->min); }inline void pushdown() {if (tag) {ls->apply(tag);rs->apply(tag);tag = 0;}}inline void apply(int _tag) { min = tag = _tag; }};struct SegTree {int n;Node* root;vector<vector<int>> f;vector<int> lg;inline SegTree() {}inline SegTree(const vector<int>& a, int k) {n = a.size();st_init(a);root = newnode(0, n * k - 1);}inline void st_init(const vector<int>& a) {lg.resize(n + 1);lg[0] = -1;for (int i = 1; i <= n; i++) lg[i] = lg[i / 2] + 1;f.resize(n, vector<int>(lg[n] + 1));for (int i = 0; i < n; i++) f[i][0] = a[i];for (int j = 1; j <= lg[n]; j++)for (int i = 0; i + (1 << j) - 1 < n; i++)f[i][j] = std::min(f[i][j - 1], f[i + (1 << (j - 1))][j - 1]);}inline int st_query(int l, int r) {int p = lg[r - l + 1];int res = std::min(f[l][p], f[r - (1 << p) + 1][p]);return res;}inline int rmq(int l, int r) {if (l / n == r / n) return st_query(l % n, r % n);if (l / n + 1 == r / n) {return std::min(st_query(l % n, n - 1), st_query(0, r % n));}return st_query(0, n - 1);}inline Node* newnode(int l, int r) {Node* res = new Node;res->l = l, res->r = r;res->min = rmq(l, r), res->tag = 0;res->ls = res->rs = nullptr;return res;}inline void update(Node* u, int l, int r, int k) {if (l <= u->l && u->r <= r) return u->apply(k);const int mid = (u->l + u->r) >> 1;if (u->ls == nullptr) u->ls = newnode(u->l, mid);if (u->rs == nullptr) u->rs = newnode(mid + 1, u->r);u->pushdown();if (l <= mid) update(u->ls, l, r, k);if (r > mid) update(u->rs, l, r, k);u->pushup();}inline int query(Node* u, int l, int r) {if (l <= u->l && u->r <= r) return u->min;const int mid = (u->l + u->r) >> 1;if (u->ls == nullptr) u->ls = newnode(u->l, mid);if (u->rs == nullptr) u->rs = newnode(mid + 1, u->r);u->pushdown();int res = inf;if (l <= mid) chmin(res, query(u->ls, l, r));if (r > mid) chmin(res, query(u->rs, l, r));return res;}inline void range_assign(int l, int r, int k) { update(root, l, r, k); }inline int range_min(int l, int r) { return query(root, l, r); }};
}
using seg_tree::SegTree;signed main() {ios::sync_with_stdio(0);cin.tie(0), cout.tie(0);int n, k;cin >> n >> k;vector<int> a(n);for (int i = 0; i < n; i++) cin >> a[i];int m; cin >> m;SegTree sgt(a, k);for (int i = 0, op, l, r, v; i < m; i++) {cin >> op >> l >> r, l--, r--;if (op == 1) cin >> v, sgt.range_assign(l, r, v);else cout << sgt.range_min(l, r) << '\n';}return 0;
}