当前位置: 首页 > ops >正文

MCP(一)——QuickStart

目录

  • 1. MCP简介
  • 2. MCP的优势
  • 3. MCP核心
  • 4. QuickStart For Server Developers(仅具参考)
    • 4.1 MCP核心概念
    • 4.2 构建MCP服务器的代码
      • 4.2.1 设置MCP服务器实例
      • 4.2.2 辅助函数
      • 4.2.3 实现工具执行
      • 4.2.4 在Cherry-Studio中添加MCP服务器
      • 4.2.5 演示
        • 4.2.5.1 测试工具get_alerts
        • 4.2.5.2 测试工具get_forecast
      • 4.2.6 评价DeepSeek MCP调用的能力
  • 参考

1. MCP简介

  MCP(大模型上下文协议)是一个开放协议,旨在标准化应用程序向LLMs提供上下文的方式。可以将MCP视为AI应用的USB-C接口。正如USB-C为设备连接各种外设和配件提供了标准化方案,MCP则为AI模型连接不同数据源和工具提供了标准化途径。

2. MCP的优势

  MCP能帮助使用者在大语言模型之上构建智能体和复杂工作流。此外,大语言模型经常需要与数据和工具集成,而MCP提供了以下支持:
  1. 大语言模型可直接接入且不断增长的预构建集成列表。
  2. 灵活切换不同大语言模型供应商和服务商的能力(无须担忧切换了大语言模型就无法使用MCP、无须担忧切换了智能体框架就无法使用MCP)。
  3. 在你的基础设施内保护数据安全的最佳实践。

3. MCP核心

  MCP核心采用客户端-服务器架构,一个主机应用可连接多个服务器:
在这里插入图片描述
  MCP Hosts(MCP主机):如Claude桌面程序、集成开发环境或希望通过MCP访问数据的AI工具。
  MCP Clients(MCP客户端):与服务器保持一对一连接的协议客户端。
  MCP Servers(MCP服务器):通过标准化模型上下文协议暴露特定功能的轻量级程序。
  Local Data Sources(本地数据源):MCP服务器可安全访问的计算机文件、数据库及服务。
  Remote Services(远程服务):MCP服务器可通过互联网连接的外部系统,例如通过API。

4. QuickStart For Server Developers(仅具参考)

  modelcontextprotocol官网的QuickStart是构建一个查询美国天气的MCP天气服务器。该服务器会对外提供两个工具;get-alerts和get-forecast。官网选择了Claude桌面端作为演示该MCP的主机,但是Claude注册账户需要美国手机号,这里就使用cherry-studio作为主机,并且演示用的大语言模型选择为deepseek-reasoner。

4.1 MCP核心概念

  MCP服务器主要能提供三类功能:
  1. Resources(资源):可供客户端读取的类文件数据,如API响应或文件内容。
  2. Tools(工具):可由大语言模型调用的函数。
  3. Prompts(提示):预先编写的模板,帮助用户完成特定任务。

4.2 构建MCP服务器的代码

  以下所有代码都添加到weather.py中。

4.2.1 设置MCP服务器实例

  下面的代码通过FastMCP类来构建MCP服务器实例。FastMCP类利用Python类型提示和文档字符串自动生成工具定义,使得创建和维护MCP工具变得简单。

from typing import Any
import httpx
from mcp.server.fastmcp import FastMCP# Initialize FastMCP server
mcp = FastMCP("weather")# Constants
NWS_API_BASE = "https://api.weather.gov"
USER_AGENT = "weather-app/1.0"

4.2.2 辅助函数

  添加用于查询和格式化来自美国气象局API数据的辅助函数:

async def make_nws_request(url: str) -> dict[str, Any] | None:"""Make a request to the NWS API with proper error handling."""headers = {"User-Agent": USER_AGENT,"Accept": "application/geo+json",}async with httpx.AsyncClient() as client:try:response = await client.get(url, headers=headers, timeout=30)response.raise_for_status()return response.json()except Exception:return Nonedef format_alert(feature: dict) -> str:props = feature["properties"]return f"""Event: {props.get('event', 'Unknown')}Area: {props.get('areaDesc', 'Unknown')}Severity: {props.get('severity', 'Unknown')}Description: {props.get('description', 'No description available')}Instructions: {props.get('instruction', 'No specific instructions')}"""

4.2.3 实现工具执行

  工具执行主要是通过mcp.tool()装饰器来实现的:

@mcp.tool()
async def get_alerts(state: str) -> str:"""Get weather alerts for a US state.Args:state: Two-letter US state code (e.g. CA, NY)"""url = f"{NWS_API_BASE}/alerts/active/area/{state}"data = await make_nws_request(url)if not data or "features" not in data:return "Unable to fetch alerts or no alerts fuond."if not data["features"]:return "no active alerts for this state."alerts = [format_alert(feature) for feature in data["features"]]return "\n-----\n".join(alerts)@mcp.tool()
async def get_forecast(latitude: float, longitude: float) -> str:"""Get weather forecast for a location.Args:latitude: Latitude of the locationlongitude: Longitude of the location"""points_url = f"{NWS_API_BASE}/points/{latitude},{longitude}"points_data = await make_nws_request(points_url)if not points_data:return "Unable to fetch forecast data for this location."forecast_url = points_data["properties"]["forecast"]forecast_data = await make_nws_request(forecast_url)if not forecast_data:return "Unable to fetch detailed forecast."periods = forecast_data["properties"]["periods"]forecasts = []for period in periods[:5]:forecast = f"""{period["name"]}:Temperature: {period["temperature"]}°{period["temperatureUnit"]}Wind: {period["windSpeed"]} {period["windDirection"]}Forecast: {period["detailedForecast"]}"""forecasts.append(forecast)return "\n----\n".join(forecasts)

4.2.4 在Cherry-Studio中添加MCP服务器

  Cherry-Studio下载:https://www.cherry-ai.com/download
  在模型服务中配置API_KEY或本地模型名:
在这里插入图片描述
  点击红圈所指的位置,进入后点击按钮安装uv和bun(需要挂梯子)。
在这里插入图片描述
在这里插入图片描述
  将前面代码构建的weather MCP服务器导入到cherry-studio中,按照下图中的内容填写配置,其中参数的具体内容如下(每行只能有一个参数):

--directory
D:\\project\\Python\\learnMCP\\QuickStart (weather.py所在目录的绝对路径,括号里的内容不需要填入)
run
weather.py

在这里插入图片描述
  点击保存并启用。

4.2.5 演示

4.2.5.1 测试工具get_alerts

在这里插入图片描述
  从上图中,可以看出可能是由于函数文档字符串不够详细的缘故导致deepseek-reasoner错误调用了get_alerts工具,下面是大模型调用工具时填写的参数以及得到的响应:
在这里插入图片描述
  这里错误调用的原因是state必须是两字母的城市缩写代码,比如New York必须填写为NY。下面我通过在提示词中输入了纽约的两位州代码是NY,使得大模型正确地调用了get_alerts工具,并得到了正确的响应。
在这里插入图片描述
在这里插入图片描述

4.2.5.2 测试工具get_forecast

在这里插入图片描述
在这里插入图片描述

4.2.6 评价DeepSeek MCP调用的能力

  此外,我还使用了DeepSeek Chat来测试它MCP调用的能力,上面没有展示。
  结论如下:DeepSeek Reasoner的MCP调用(工具调用)能力比DeepSeek-Chat好一点,但是两者在调用get_alerts工具时展现出的能力一样,都需要人为提示(部分原因还是MCP服务器工具函数的解释不够详细)。而在get_forecast工具的调用上,DeepSeek Reasoner能自己寻找到New York的经纬度从而正确完成工具的调用,与之相反,DeepSeek Chat则认为它需要一个工具来获取New York的经纬度从而无法完成工具的调用。
  Claude官方是MCP的提出者,据说Claude对工具的调用是目前大语言模型里最好的,可是Claude账户的注册需要境外手机号,也就无法测试比较了。

参考

https://modelcontextprotocol.io/introduction
https://modelcontextprotocol.io/quickstart/server

http://www.xdnf.cn/news/6127.html

相关文章:

  • Java—— 可变参数、集合工具类、集合嵌套
  • Vue.js---嵌套的effect与effect栈
  • Maven构建流程详解:如何正确管理微服务间的依赖关系-当依赖的模块更新后,我应该如何重新构建主项目
  • D. Eating【Codeforces Round 1005 (Div. 2)】
  • Spring 中常见的属性注入方式(XML配置文件)
  • 单调栈简单习题分析
  • Web安全核心内容与常见漏洞总结
  • EasyConnect卸载大汇总
  • vulnhub靶场——secarmy
  • 动态多因子策略
  • RDD的自定义分区器
  • stm32 ADC单通道转换
  • 反射, 注解, 动态代理
  • 【PSINS工具箱】基于工具箱的单独GNSS导航、单独INS导航、两者结合组合导航,三种导航的对比程序。附完整的代码
  • 一文理解扩散模型(生成式AI模型)(2)
  • 使用 Docker Desktop 安装 Neo4j 知识图谱
  • VastBase的日常操作记录
  • Qt功能区:简介与安装
  • JS中本地存储(LocalStorage)和会话存储(sessionStorage)的使用和区别
  • vscode - 笔记
  • Deep Learning(手写字识别 - CNN)
  • Python算法思想
  • 企业级IP代理解决方案:负载均衡与API接口集成实践
  • 【导航信号模拟器】【MATLAB APP】MATLAB AppDesigner基本使用教程
  • DA14531如何在固件中生成与时间相关的mac和版本号
  • react+html-docx-js将页面导出为docx
  • 没经过我同意,flink window就把数据存到state里的了?
  • Java 大视界——Java 大数据在智慧交通智能停车诱导系统中的数据融合与实时更新
  • 命令行快速上传文件到SFTP服务器(附参考示例)
  • 灰度图像和RGB图像在数据大小和编码处理方式差别