2025北京师范大学数学分析考研试题
2025北京师范大学数学分析考研试题
题目速览
-
已知数列 a1=3,an+1=3+ana_1 = \sqrt{3}, a_{n+1} = \sqrt{3 + a_n}a1=3,an+1=3+an,证明 {an}\{a_n\}{an} 收敛
-
计算
limn→∞πn∑k=1n12+coskπn\lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^n \frac{1}{2 + \cos \frac{k\pi}{n}}n→∞limnπk=1∑n2+cosnkπ1
已知 f(x)f(x)f(x) 在 [0,2][0, 2][0,2] 上可导,且f(0)=0f(0) = 0f(0)=0,f′(x)f'(x)f′(x) 在[0,2][0, 2][0,2]上连续。证明:
∫02∣f(x)f′(x)∣dx≤∫02∣f′(x)∣2dx
\int_0^2 \left| f(x) f'(x) \right| dx \leq \int_0^2 \left| f'(x) \right|^2 dx
∫02∣f(x)f′(x)∣dx≤∫02∣f′(x)∣2dx
-
求级数和
∑n=0∞1n!(n+1)(n+2)xn \sum_{n=0}^{\infty} \frac{1}{n!} (n + 1)(n + 2) x^n n=0∑∞n!1(n+1)(n+2)xn -
已知A∈RA \in \mathbb{R}A∈R,函数f(x)f(x)f(x)在[0,+∞)[0, +\infty)[0,+∞)上连续,且
limx→+∞f(x)=A
\lim_{x \to +\infty} f(x) = A
x→+∞limf(x)=A
证明:
limx→+∞1x∫0xf(t)dt=A\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) dt = A
x→+∞limx1∫0xf(t)dt=A
- 判断
∫2+∞sinxlnxarctanx dx\int_2^{+\infty} \frac{\sin x}{\ln x} \arctan x \, dx
∫2+∞lnxsinxarctanxdx
的敛散性,并说明理由。
-
求函数
f(x,y)=−x2y(x+y−4) f(x, y) = -x^2 y (x + y - 4) f(x,y)=−x2y(x+y−4)
在与 xxx 轴、yyy 轴、直线 y=6−xy = 6 - xy=6−x 围成的闭区域DDD 中的极值,最大值与最小值。 -
已知 f(x,y)=g(∣xy∣)f(x, y) = g(|xy|)f(x,y)=g(∣xy∣),且 g(0)=0g(0) = 0g(0)=0,在 z>0z > 0z>0 附近,有 ∣g(z)∣≤zα,α>12|g(z)| \leq z^{\alpha}, \alpha > \frac{1}{2}∣g(z)∣≤zα,α>21。证明:f(x,y)f(x, y)f(x,y) 在 (0,0)(0, 0)(0,0)处可微。
-
已知 Σ\SigmaΣ 为单位球面x2+y2+z2=1x^2 + y^2 + z^2 = 1x2+y2+z2=1,取外侧。求曲面积分
∬Σxdyddzdx+zdxdy(2x2+2y2+z2)32 \iint_{\Sigma} \frac{x \mathrm{d}y \mathrm{d}\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(2x^2 + 2y^2 + z^2)^{\frac{3}{2}}} ∬Σ(2x2+2y2+z2)23xdyddzdx+zdxdy -
求三重积分
∭x2+y2+z2≤2z(x2+y2+z2+x−y3)dV \iiint_{x^2 + y^2 + z^2 \leq 2z} \left( \sqrt{x^2 + y^2 + z^2} + x - y^3 \right) \mathrm{d}V ∭x2+y2+z2≤2z(x2+y2+z2+x−y3)dV
逐题详解
已知数列 a1=3,an+1=3+ana_1 = \sqrt{3}, a_{n+1} = \sqrt{3 + a_n}a1=3,an+1=3+an,证明 {an}\{a_n\}{an} 收敛
证明
已知
a1=3≤1+132a_1=\sqrt{3}\leq\frac{1+\sqrt{13}}{2} a1=3≤21+13
设an<1+132a_n<\frac{1+\sqrt{13}}{2}an<21+13,则:
an+1=3+1+132≤1+132a_{n+1}=\sqrt{3+\frac{1+\sqrt{13}}{2}}\leq \frac{1+\sqrt{13}}{2}an+1=3+21+13≤21+13
由数学归纳法,可得:
an≤1+132a_n\leq \frac{1+\sqrt{13}}{2}an≤21+13
又:
an+1−an=3+an−an≥0a_{n+1}-a_n=\sqrt{3+a_n}-a_n\ge 0an+1−an=3+an−an≥0
故数列{an}\{a_n\}{an}单调递增有上界。
故,a1=3,an+1=3+ana_1 = \sqrt{3}, a_{n+1} = \sqrt{3 + a_n}a1=3,an+1=3+an两边同时取极限:
limn→∞an=1+132\lim_{n\rightarrow \infty}a_n=\frac{1+\sqrt{13}}{2}n→∞liman=21+13
计算
limn→∞πn∑k=1n12+coskπn\lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^n \frac{1}{2 + \cos \frac{k\pi}{n}}n→∞limnπk=1∑n2+cosnkπ1
解
由定积分的定义:
limn→∞πn∑k=1n12+coskπn=π∫0112+cosπx=∫0π12+cosxdx=π33 \begin{align*} \lim_{n \to \infty} \frac{\pi}{n} \sum_{k=1}^n \frac{1}{2 + \cos \frac{k\pi}{n}}&=\pi \int_{0}^{1}\frac{1}{2+\cos{\pi x}}\\&=\int_{0}^{\pi}\frac{1}{2+\cos{x}}\mathrm{d}x\\&=\dfrac{\pi \sqrt{3}}{3} \end{align*} n→∞limnπk=1∑n2+cosnkπ1=π∫012+cosπx1=∫0π2+cosx1dx=3π3
已知 f(x)f(x)f(x) 在 [0,2][0, 2][0,2] 上可导,且f(0)=0f(0) = 0f(0)=0,f′(x)f'(x)f′(x) 在[0,2][0, 2][0,2]上连续。证明:
∫02∣f(x)f′(x)∣dx≤∫02∣f′(x)∣2dx \int_0^2 \left| f(x) f'(x) \right| dx \leq \int_0^2 \left| f'(x) \right|^2 dx ∫02∣f(x)f′(x)∣dx≤∫02∣f′(x)∣2dx
解
由题意可知:f(x)=∫0xf′(t)dtf(x) = \int_{0}^{x} f'(t) \mathrm{d}tf(x)=∫0xf′(t)dt,且由定积分性质和绝对值不等式有:
∣f(x)∣=∣∫0xf′(t)dt∣⩽∫0x∣f′(t)∣dt
\left| f(x) \right| = \left| \int_{0}^{x} f'(t) \mathrm{d}t \right| \leqslant \int_{0}^{x} \left| f'(t) \right| \mathrm{d}t
∣f(x)∣=∫0xf′(t)dt⩽∫0x∣f′(t)∣dt
于是有:
∫02∣f′(x)f(x)∣dx⩽∫02∣f′(x)∣⋅∣f(x)∣dx⩽∫02(∫0x∣f′(t)∣dt)∣f(x)∣dx
\int_{0}^{2} \left| f'(x) f(x) \right| \mathrm{d}x \leqslant \int_{0}^{2} \left| f'(x) \right| \cdot \left| f(x) \right| \mathrm{d}x \leqslant \int_{0}^{2} \left( \int_{0}^{x} \left| f'(t) \right| \mathrm{d}t \right) \left| f(x) \right| \mathrm{d}x
∫02∣f′(x)f(x)∣dx⩽∫02∣f′(x)∣⋅∣f(x)∣dx⩽∫02(∫0x∣f′(t)∣dt)∣f(x)∣dx
∫02(∫0x∣f′(t)∣dt)∣f(x)∣dx=∫02(∫0x∣f′(t)∣dt)d(∫0x∣f′(t)∣dt)=12(∫0x∣f′(t)∣dt)2∣02=12(∫02∣f′(t)∣dt)2=12(∫021⋅∣f′(x)∣dx)2⩽12∫0212dx⋅∫02∣f′(x)∣2dx=12⋅x2∣02⋅∫02∣f′(x)∣2dx=12⋅(2−0)⋅∫02∣f′(x)∣2dx=∫02∣f′(x)∣2dx\begin{align*} \int_{0}^{2} \left( \int_{0}^{x} \left| f'(t) \right| \mathrm{d}t \right) \left| f(x) \right| \mathrm{d}x &= \int_{0}^{2} \left( \int_{0}^{x} \left| f'(t) \right| \mathrm{d}t \right) \mathrm{d} \left( \int_{0}^{x} \left| f'(t) \right| \mathrm{d}t \right) \\ &= \frac{1}{2} \left. \left( \int_{0}^{x} \left| f'(t) \right| \mathrm{d}t \right)^2 \right|_{0}^{2} = \frac{1}{2} \left( \int_{0}^{2} \left| f'(t) \right| \mathrm{d}t \right)^2 \\ &= \frac{1}{2} \left( \int_{0}^{2} 1 \cdot \left| f'(x) \right| \mathrm{d}x \right)^2 \leqslant \frac{1}{2} \int_{0}^{2} 1^2 \mathrm{d}x \cdot \int_{0}^{2} \left| f'(x) \right|^2 \mathrm{d}x \\ &= \frac{1}{2} \cdot \left. x^2 \right|_{0}^{2} \cdot \int_{0}^{2} \left| f'(x) \right|^2 \mathrm{d}x \\ &= \frac{1}{2} \cdot (2 - 0) \cdot \int_{0}^{2} \left| f'(x) \right|^2 \mathrm{d}x = \int_{0}^{2} \left| f'(x) \right|^2 \mathrm{d}x \end{align*} ∫02(∫0x∣f′(t)∣dt)∣f(x)∣dx=∫02(∫0x∣f′(t)∣dt)d(∫0x∣f′(t)∣dt)=21(∫0x∣f′(t)∣dt)202=21(∫02∣f′(t)∣dt)2=21(∫021⋅∣f′(x)∣dx)2⩽21∫0212dx⋅∫02∣f′(x)∣2dx=21⋅x202⋅∫02∣f′(x)∣2dx=21⋅(2−0)⋅∫02∣f′(x)∣2dx=∫02∣f′(x)∣2dx
综上所述:
∫02∣f′(x)f(x)∣dx⩽∫02∣f′(x)∣2dx
\int_{0}^{2} \left| f'(x) f(x) \right| \mathrm{d}x \leqslant \int_{0}^{2} \left| f'(x) \right|^2 \mathrm{d}x
∫02∣f′(x)f(x)∣dx⩽∫02∣f′(x)∣2dx
求级数和
∑n=0∞1n!(n+1)(n+2)xn \sum_{n=0}^{\infty} \frac{1}{n!} (n + 1)(n + 2) x^n n=0∑∞n!1(n+1)(n+2)xn
解
∑n=0∞1n!(n+1)(n+2)xn=∑n=0∞1n!(xn+2)′′=(∑n=0∞1n!xn+2)′′=(x2∑n=0∞1n!xn)′′=(x2ex)′′\begin{align*} \sum_{n=0}^{\infty} \frac{1}{n!} (n + 1)(n + 2) x^n&=\sum_{n=0}^{\infty} \frac{1}{n!} (x^{n+2})^{\prime\prime}=\left(\sum_{n=0}^{\infty} \frac{1}{n!} x^{n+2}\right)^{\prime\prime}\\ &=\left(x^2\sum_{n=0}^{\infty} \frac{1}{n!} x^{n}\right)^{\prime\prime}\\ &=\left(x^2e^{x}\right)^{\prime\prime} \end{align*} n=0∑∞n!1(n+1)(n+2)xn=n=0∑∞n!1(xn+2)′′=(n=0∑∞n!1xn+2)′′=(x2n=0∑∞n!1xn)′′=(x2ex)′′
显然收敛域为(−∞,+∞)(-\infty,+\infty)(−∞,+∞)。
已知A∈RA \in \mathbb{R}A∈R,函数f(x)f(x)f(x)在[0,+∞)[0, +\infty)[0,+∞)上连续,且
limx→+∞f(x)=A \lim_{x \to +\infty} f(x) = A x→+∞limf(x)=A证明:
limx→+∞1x∫0xf(t)dt=A\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) \mathrm{d}t = A x→+∞limx1∫0xf(t)dt=A
解
方法一:分析语言
对于limx→+∞f(x)=A\lim\limits_{x \to +\infty} f(x) = Ax→+∞limf(x)=A由极限语言知:,对于任意的ε>0\varepsilon>0ε>0,存在某个M>0M>0M>0,当x>Xx>Xx>X时:
∣f(x)−A∣<ε |f(x)-A|< \varepsilon ∣f(x)−A∣<ε
有:
KaTeX parse error: Expected group after '_' at position 82: …hrm{d}t &= \lim_̲\limits{x \to +…
解法二:夹逼准则
由
[x]≤x≤[x]+1[x]\leq x\leq[x]+1[x]≤x≤[x]+1
得到:
lim[x]→+∞1[x]+1∫0[x]f(t)dt≤limx→+∞1x∫0xf(t)dt≤lim[x]→+∞1[x]∫0[x]+1f(t)dt \lim_{[x] \to +\infty} \frac{1}{[x]+1} \int_0^{[x]} f(t) \mathrm{d}t\leq \lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) \mathrm{d}t\leq\lim_{[x] \to +\infty} \frac{1}{[x]} \int_0^{[x]+1} f(t) \mathrm{d}t [x]→+∞lim[x]+11∫0[x]f(t)dt≤x→+∞limx1∫0xf(t)dt≤[x]→+∞lim[x]1∫0[x]+1f(t)dt
左边:
lim[x]→+∞1[x]+1∫0[x]f(t)dt=lim[x]→+∞∫[x]−1[x]f(t)dt=A\lim_{[x] \to +\infty} \frac{1}{[x]+1} \int_0^{[x]} f(t) \mathrm{d}t=\lim_{[x] \to +\infty} \int_{[x]-1}^{[x]} f(t) \mathrm{d}t=A[x]→+∞lim[x]+11∫0[x]f(t)dt=[x]→+∞lim∫[x]−1[x]f(t)dt=A
右边同理。
得到:
limx→+∞1x∫0xf(t)dt=A\lim_{x \to +\infty} \frac{1}{x} \int_0^x f(t) \mathrm{d}t = A x→+∞limx1∫0xf(t)dt=A
判断
∫2+∞sinxlnxarctanx dx\int_2^{+\infty} \frac{\sin x}{\ln x} \arctan x \, \mathrm{d}x ∫2+∞lnxsinxarctanxdx
的敛散性,并说明理由。
解
显然,arctanx\arctan{x}arctanx单调有界。若∫2∞sinxlnxdx\int_{2}^{\infty}\frac{\sin{x}}{\ln{x}}\mathrm{d}x∫2∞lnxsinxdx收敛,则原反常积分必然收敛.下研究∫2∞sinxlnxdx\int_{2}^{\infty}\frac{\sin{x}}{\ln{x}}\mathrm{d}x∫2∞lnxsinxdx.1x\frac{1}{x}x1单调减小至000,∫2Asinxdx\int_{2}^{A}\sin{x}\mathrm{d}x∫2Asinxdx显然有界,因此∫2∞sinxlnxdx\int_{2}^{\infty}\frac{\sin{x}}{\ln{x}}\mathrm{d}x∫2∞lnxsinxdx收敛,则原反常积分必然收敛。
求函数
f(x,y)=−x2y(x+y−4) f(x, y) = -x^2 y (x + y - 4) f(x,y)=−x2y(x+y−4)
在与 xxx 轴、yyy 轴、直线 y=6−xy = 6 - xy=6−x 围成的闭区域DDD 中的极值,最大值与最小值。
解
略
已知 f(x,y)=g(∣xy∣)f(x, y) = g(|xy|)f(x,y)=g(∣xy∣),且 g(0)=0g(0) = 0g(0)=0,在 z>0z > 0z>0 附近,有 ∣g(z)∣≤zα,α>12|g(z)| \leq z^{\alpha}, \alpha > \frac{1}{2}∣g(z)∣≤zα,α>21。证明:f(x,y)f(x, y)f(x,y) 在 (0,0)(0, 0)(0,0)处可微。
解
由定义求出偏导数:
fx′(0,0)=limx→0g(∣x⋅0∣)−g(0)x=0f^{\prime}_{x}(0,0)=\lim_{x\rightarrow 0}\frac{g(|x\cdot 0|)-g(0)}{x}=0fx′(0,0)=x→0limxg(∣x⋅0∣)−g(0)=0
fy′(0,0)=limy→0g(∣y⋅0∣)−g(0)y=0f^{\prime}_{y}(0,0)=\lim_{y\rightarrow 0}\frac{g(|y\cdot 0|)-g(0)}{y}=0fy′(0,0)=y→0limyg(∣y⋅0∣)−g(0)=0
由可微的定义:
∣lim(x,y)→(0,0)f(x,y)−f(0,0)−fx′(0,0)−fy′(0,0)x2+y2∣≤lim(x,y)→(0,0)∣xy∣2αx2+y2≤lim(x,y)→(0,0)12(xy)2α−1→0\left|\lim_{(x,y)\rightarrow (0,0)}\frac{f(x,y)-f(0,0)-f^{\prime}_{x}(0,0)-f^{\prime}_{y}(0,0)}{\sqrt{x^2+y^2}}\right|\leq \lim_{(x,y)\rightarrow (0,0)}\frac{|\sqrt{xy}|^{2\alpha}}{\sqrt{x^2+y^2}}\leq \lim_{(x,y)\rightarrow (0,0)}\frac{1}{2}(\sqrt{xy})^{2\alpha-1}\rightarrow 0(x,y)→(0,0)limx2+y2f(x,y)−f(0,0)−fx′(0,0)−fy′(0,0)≤(x,y)→(0,0)limx2+y2∣xy∣2α≤(x,y)→(0,0)lim21(xy)2α−1→0
已知 Σ\SigmaΣ 为单位球面x2+y2+z2=1x^2 + y^2 + z^2 = 1x2+y2+z2=1,取外侧。求曲面积分
∬Σxdydz+ydzdx+zdxdy(2x2+2y2+z2)32 \iint_{\Sigma} \frac{x \mathrm{d}y \mathrm{d}z+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(2x^2 + 2y^2 + z^2)^{\frac{3}{2}}} ∬Σ(2x2+2y2+z2)23xdydz+ydzdx+zdxdy
解
记Γ:ax2+by2+cz2=ε2\Gamma:ax^2+by^2+cz^2=\varepsilon^2Γ:ax2+by2+cz2=ε2取外侧:
∬Σxdydx+ydzdx+zdxdy(ax2+by2+cz2)32=∬Σ−Γxdydz+ydzdx+zdxdy(ax2+by2+cz2)32+∬Γxdydz+ydzdx+zdxdy(ax2+by2+cz2)32=∬Γxdydz+ydzdx+zdxdy(ax2+by2+cz2)32=1ε3∬Γxdydz+ydzdx+zdxdy=1ε3∬Γ3dxyz=4πabc\begin{align*}\iint_{\Sigma} \frac{x \mathrm{d}y \mathrm{d}x+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(ax^2+by^2+cz^2)^{\frac{3}{2}}}&=\iint_{\Sigma-\Gamma} \frac{x \mathrm{d}y \mathrm{d}z+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(ax^2+by^2+cz^2)^{\frac{3}{2}}}+\iint_{\Gamma} \frac{x \mathrm{d}y \mathrm{d}z+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(ax^2+by^2+cz^2)^{\frac{3}{2}}}\\ &=\iint_{\Gamma} \frac{x \mathrm{d}y \mathrm{d}z+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(ax^2+by^2+cz^2)^{\frac{3}{2}}}\\ &=\frac{1}{\varepsilon^3}\iint_{\Gamma} x \mathrm{d}y \mathrm{d}z+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y \\ &=\frac{1}{\varepsilon^3}\iint_{\Gamma}3\mathrm{d}xyz\\ &=\frac{4\pi}{\sqrt{abc}} \end{align*}∬Σ(ax2+by2+cz2)23xdydx+ydzdx+zdxdy=∬Σ−Γ(ax2+by2+cz2)23xdydz+ydzdx+zdxdy+∬Γ(ax2+by2+cz2)23xdydz+ydzdx+zdxdy=∬Γ(ax2+by2+cz2)23xdydz+ydzdx+zdxdy=ε31∬Γxdydz+ydzdx+zdxdy=ε31∬Γ3dxyz=abc4π
故
∬Σxdydz+ydzdx+zdxdy(2x2+2y2+z2)32=2π\iint_{\Sigma} \frac{x \mathrm{d}y \mathrm{d}z+y\mathrm{d}z \mathrm{d}x + z \mathrm{d}x \mathrm{d}y}{(2x^2 + 2y^2 + z^2)^{\frac{3}{2}}}=2\pi∬Σ(2x2+2y2+z2)23xdydz+ydzdx+zdxdy=2π
求三重积分
∭x2+y2+z2≤2z(x2+y2+z2+x−y3)dV \iiint_{x^2 + y^2 + z^2 \leq 2z} \left( \sqrt{x^2 + y^2 + z^2} + x - y^3 \right) \mathrm{d}V ∭x2+y2+z2≤2z(x2+y2+z2+x−y3)dV
解
用球坐标变换:
{x=rsinθcosφy=rsinθsinφz=rcosθ\begin{cases}
x = r\sin\theta\cos\varphi \\
y = r\sin\theta\sin\varphi \\
z = r\cos\theta
\end{cases}⎩⎨⎧x=rsinθcosφy=rsinθsinφz=rcosθ
则
∭x2+y2+z2≤2z(x2+y2+z2+x−y3)dV=∫02πdφ∫0π2sinθdθ∫02cosθ(1+sinθcosφ−r2sin3θsin3φ)r3dr=∫02πdφ∫0π2sinθ(−323sin3θcos6θsin3φ+4sinθcos4θcosφ+4cos4θ)dθ=∫02π180(−5πsin3φ+10πcosφ+64)dφ=8π5 \begin{aligned} &\iiint\limits_{x^2 + y^2 + z^2 \leq 2z} \left( \sqrt{x^2 + y^2 + z^2} + x - y^3 \right) \rm{d}V \\ =& \int_{0}^{2\pi} \rm{d}\varphi \int_{0}^{\frac{\pi}{2}} \sin\theta \rm{d}\theta \int_{0}^{2\cos\theta} \left( 1 + \sin\theta\cos\varphi - r^2 \sin^3\theta\sin^3\varphi \right) r^3 \rm{d}r \\ =& \int_{0}^{2\pi} \rm{d}\varphi \int_{0}^{\frac{\pi}{2}} \sin\theta \left( -\frac{32}{3} \sin^3\theta\cos^6\theta\sin^3\varphi + 4\sin\theta\cos^4\theta\cos\varphi + 4\cos^4\theta \right) \rm{d}\theta \\ =& \int_{0}^{2\pi} \frac{1}{80} \left( -5\pi\sin^3\varphi + 10\pi\cos\varphi + 64 \right) \rm{d}\varphi = \frac{8\pi}{5} \end{aligned} ===x2+y2+z2≤2z∭(x2+y2+z2+x−y3)dV∫02πdφ∫02πsinθdθ∫02cosθ(1+sinθcosφ−r2sin3θsin3φ)r3dr∫02πdφ∫02πsinθ(−332sin3θcos6θsin3φ+4sinθcos4θcosφ+4cos4θ)dθ∫02π801(−5πsin3φ+10πcosφ+64)dφ=58π