gRPC 的四种通信模式完整示例
gRPC 的四种基本通信模式,包括完整的 .proto
文件定义和 Go 语言实现代码:
1. 简单 RPC (Unary RPC) - 请求/响应模式
客户端发送单个请求,服务端返回单个响应
calculator.proto
protobuf
syntax = "proto3";package calculator;service Calculator {// Unary RPCrpc Add (AddRequest) returns (AddResponse) {}
}message AddRequest {int32 a = 1;int32 b = 2;
}message AddResponse {int32 result = 1;
}
服务端实现 (Go)
package mainimport ("context""log""net""google.golang.org/grpc"pb "path/to/calculator"
)type server struct {pb.UnimplementedCalculatorServer
}func (s *server) Add(ctx context.Context, req *pb.AddRequest) (*pb.AddResponse, error) {result := req.A + req.Breturn &pb.AddResponse{Result: result}, nil
}func main() {lis, err := net.Listen("tcp", ":50051")if err != nil {log.Fatalf("failed to listen: %v", err)}s := grpc.NewServer()pb.RegisterCalculatorServer(s, &server{})log.Printf("server listening at %v", lis.Addr())if err := s.Serve(lis); err != nil {log.Fatalf("failed to serve: %v", err)}
}
客户端实现 (Go)
package main
import ("context""log""os""time""google.golang.org/grpc"pb "path/to/calculator"
)func main() {conn, err := grpc.Dial("localhost:50051", grpc.WithInsecure())if err != nil {log.Fatalf("did not connect: %v", err)}defer conn.Close()c := pb.NewCalculatorClient(conn)ctx, cancel := context.WithTimeout(context.Background(), time.Second)defer cancel()// Unary RPC 调用r, err := c.Add(ctx, &pb.AddRequest{A: 5, B: 3})if err != nil {log.Fatalf("could not add: %v", err)}log.Printf("Result: %d", r.GetResult())
}
2. 服务端流式 RPC (Server Streaming RPC)
客户端发送单个请求,服务端返回流式响应
calculator.proto
// Server Streaming RPC
rpc PrimeFactors (PrimeRequest) returns (stream PrimeResponse) {
message PrimeRequest {int32 number = 1;
}message PrimeResponse {int32 factor = 1;
}
服务端实现
func (s *server) PrimeFactors(req *pb.PrimeRequest, stream pb.Calculator_PrimeFactorsServer) error {n := req.GetNumber()factor := 2for n > 1 {if n%int32(factor) == 0 {// 发送因数stream.Send(&pb.PrimeResponse{Factor: int32(factor)})n /= int32(factor)} else {factor++}}return nil
}
客户端实现
// 服务端流式调用
stream, err := c.PrimeFactors(ctx, &pb.PrimeRequest{Number: 120})
if err != nil {log.Fatalf("could not get prime factors: %v", err)
}log.Print("Prime factors of 120:")
for {res, err := stream.Recv()if err == io.EOF {break}if err != nil {log.Fatalf("error receiving factor: %v", err)}log.Printf("- %d", res.GetFactor())
}
3. 客户端流式 RPC (Client Streaming RPC)
客户端发送流式请求,服务端返回单个响应
calculator.proto
// Client Streaming RPC
rpc Average (stream AverageRequest) returns (AverageResponse) {}
message AverageRequest {double number = 1;
}message AverageResponse {double average = 1;
}
服务端实现
func (s *server) Average(stream pb.Calculator_AverageServer) error {sum := 0.0count := 0for {req, err := stream.Recv()if err == io.EOF {// 计算平均值并返回响应average := sum / float64(count)return stream.SendAndClose(&pb.AverageResponse{Average: average})}if err != nil {return err}sum += req.GetNumber()count++}
}
客户端实现
// 客户端流式调用
avgStream, err := c.Average(ctx)
if err != nil {log.Fatalf("could not calculate average: %v", err)
}numbers := []float64{1.5, 2.5, 3.5, 4.5, 5.5}
for _, num := range numbers {if err := avgStream.Send(&pb.AverageRequest{Number: num}); err != nil {log.Fatalf("error sending number: %v", err)}
}avgRes, err := avgStream.CloseAndRecv()
if err != nil {log.Fatalf("error receiving average: %v", err)
}
log.Printf("Average: %.2f", avgRes.GetAverage())
4. 双向流式 RPC (Bidirectional Streaming RPC)
客户端和服务端同时发送流式消息
calculator.proto
// Bidirectional Streaming RPC
rpc Chat (stream ChatMessage) returns (stream ChatMessage) {}
message ChatMessage {string text = 1;int64 timestamp = 2;
}
服务端实现
func (s *server) Chat(stream pb.Calculator_ChatServer) error {for {in, err := stream.Recv()if err == io.EOF {return nil}if err != nil {return err}// 模拟处理消息log.Printf("Received: %s", in.GetText())response := &pb.ChatMessage{Text: "Echo: " + in.GetText(),Timestamp: time.Now().UnixNano(),}// 发送响应if err := stream.Send(response); err != nil {return err}}
}
客户端实现
// 双向流式调用
chatStream, err := c.Chat(ctx)
if err != nil {log.Fatalf("could not start chat: %v", err)
}// 接收消息的goroutine
go func() {for {res, err := chatStream.Recv()if err == io.EOF {return}if err != nil {log.Fatalf("error receiving message: %v", err)}log.Printf("Server: %s (time: %d)", res.GetText(), res.GetTimestamp())}
}()// 发送消息
messages := []string{"Hello", "How are you?", "Goodbye"}
for _, msg := range messages {if err := chatStream.Send(&pb.ChatMessage{Text: msg,Timestamp: time.Now().UnixNano(),}); err != nil {log.Fatalf("error sending message: %v", err)}time.Sleep(1 * time.Second)
}chatStream.CloseSend()
项目结构建议
grpc-demo/ ├── proto/ │ └── calculator.proto ├── server/ │ └── main.go ├── client/ │ └── main.go └── gen/└── calculator.pb.go # 自动生成的代码
编译和运行步骤
-
安装依赖:
go install google.golang.org/protobuf/cmd/protoc-gen-go@v1.28 go install google.golang.org/grpc/cmd/protoc-gen-go-grpc@v1.2
-
生成 gRPC 代码:
protoc --go_out=./gen --go_opt=paths=source_relative \--go-grpc_out=./gen --go-grpc_opt=paths=source_relative \proto/calculator.proto
-
启动服务端:
cd server go run main.go
-
启动客户端:
cd client go run main.go
各模式适用场景总结
模式 | 特点 | 适用场景 |
---|---|---|
简单RPC | 1请求 → 1响应 | 常规API调用,如用户验证、数据查询 |
服务端流式 | 1请求 → N响应 | 实时数据推送、大文件下载、实时监控 |
客户端流式 | N请求 → 1响应 | 批量上传、日志收集、传感器数据汇总 |
双向流式 | N请求 ↔ N响应 | 实时聊天、游戏状态同步、双向数据流处理 |
这些示例展示了 gRPC 的核心通信模式,您可以根据实际需求组合使用这些模式构建复杂的分布式系统。