当前位置: 首页 > news >正文

Python训练营打卡DAY51

DAY 51 复习日

作业:day43的时候我们安排大家对自己找的数据集用简单cnn训练,现在可以尝试下借助这几天的知识来实现精度的进一步提高

kaggl的一个图像数据集;数据集地址:Lung Nodule Malignancy 肺结核良恶性判断 

三层卷积CNN做到的精度63%,现在需要实现提高。

昨天代码

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 定义通道注意力
class ChannelAttention(nn.Module):def __init__(self, in_channels, ratio=16):"""通道注意力机制初始化参数:in_channels: 输入特征图的通道数ratio: 降维比例,用于减少参数量,默认为16"""super().__init__()# 全局平均池化,将每个通道的特征图压缩为1x1,保留通道间的平均值信息self.avg_pool = nn.AdaptiveAvgPool2d(1)# 全局最大池化,将每个通道的特征图压缩为1x1,保留通道间的最显著特征self.max_pool = nn.AdaptiveMaxPool2d(1)# 共享全连接层,用于学习通道间的关系# 先降维(除以ratio),再通过ReLU激活,最后升维回原始通道数self.fc = nn.Sequential(nn.Linear(in_channels, in_channels // ratio, bias=False),  # 降维层nn.ReLU(),  # 非线性激活函数nn.Linear(in_channels // ratio, in_channels, bias=False)   # 升维层)# Sigmoid函数将输出映射到0-1之间,作为各通道的权重self.sigmoid = nn.Sigmoid()def forward(self, x):"""前向传播函数参数:x: 输入特征图,形状为 [batch_size, channels, height, width]返回:调整后的特征图,通道权重已应用"""# 获取输入特征图的维度信息,这是一种元组的解包写法b, c, h, w = x.shape# 对平均池化结果进行处理:展平后通过全连接网络avg_out = self.fc(self.avg_pool(x).view(b, c))# 对最大池化结果进行处理:展平后通过全连接网络max_out = self.fc(self.max_pool(x).view(b, c))# 将平均池化和最大池化的结果相加并通过sigmoid函数得到通道权重attention = self.sigmoid(avg_out + max_out).view(b, c, 1, 1)# 将注意力权重与原始特征相乘,增强重要通道,抑制不重要通道return x * attention #这个运算是pytorch的广播机制## 空间注意力模块
class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):# 通道维度池化avg_out = torch.mean(x, dim=1, keepdim=True)  # 平均池化:(B,1,H,W)max_out, _ = torch.max(x, dim=1, keepdim=True)  # 最大池化:(B,1,H,W)pool_out = torch.cat([avg_out, max_out], dim=1)  # 拼接:(B,2,H,W)attention = self.conv(pool_out)  # 卷积提取空间特征return x * self.sigmoid(attention)  # 特征与空间权重相乘## CBAM模块
class CBAM(nn.Module):def __init__(self, in_channels, ratio=16, kernel_size=7):super().__init__()self.channel_attn = ChannelAttention(in_channels, ratio)self.spatial_attn = SpatialAttention(kernel_size)def forward(self, x):x = self.channel_attn(x)x = self.spatial_attn(x)return ximport torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
import numpy as np# 设置中文字体支持
plt.rcParams["font.family"] = ["SimHei"]
plt.rcParams['axes.unicode_minus'] = False  # 解决负号显示问题# 检查GPU是否可用
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
print(f"使用设备: {device}")# 数据预处理(与原代码一致)
train_transform = transforms.Compose([transforms.RandomCrop(32, padding=4),transforms.RandomHorizontalFlip(),transforms.ColorJitter(brightness=0.2, contrast=0.2, saturation=0.2, hue=0.1),transforms.RandomRotation(15),transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])test_transform = transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010))
])# 加载数据集(与原代码一致)
train_dataset = datasets.CIFAR10(root='./data', train=True, download=True, transform=train_transform)
test_dataset = datasets.CIFAR10(root='./data', train=False, transform=test_transform)
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=64, shuffle=False)import torch
import torchvision.models as models
from torchinfo import summary #之前的内容说了,推荐用他来可视化模型结构,信息最全# 加载 vgg16(预训练)
model = models.vgg16(pretrained=True)
model.eval()# 输出模型结构和参数概要
summary(model, input_size=(1, 3, 224, 224))import torch
import torch.nn as nn
from torchvision import models# 自定义VGG16模型,插入CBAM模块import torch
import torch.nn as nn
import torch.nn.functional as F
from torchvision import modelsclass ChannelAttention(nn.Module):def __init__(self, in_planes, ratio=16):super(ChannelAttention, self).__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc1 = nn.Conv2d(in_planes, in_planes // ratio, 1, bias=False)self.relu1 = nn.ReLU()self.fc2 = nn.Conv2d(in_planes // ratio, in_planes, 1, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc2(self.relu1(self.fc1(self.avg_pool(x))))max_out = self.fc2(self.relu1(self.fc1(self.max_pool(x))))out = avg_out + max_outreturn self.sigmoid(out)class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super(SpatialAttention, self).__init__()self.conv1 = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv1(x)return self.sigmoid(x)class CBAM(nn.Module):def __init__(self, in_planes, ratio=16, kernel_size=7):super(CBAM, self).__init__()self.ca = ChannelAttention(in_planes, ratio)self.sa = SpatialAttention(kernel_size)def forward(self, x):x = x * self.ca(x)x = x * self.sa(x)return xclass VGG16_CBAM(nn.Module):def __init__(self, num_classes=10, pretrained=True):super().__init__()# 加载预训练VGGoriginal_vgg = models.vgg16(pretrained=pretrained)# 修改特征提取部分适应32x32输入self.features = nn.Sequential(# 替换第一个卷积层(原始kernel_size=7太大)nn.Conv2d(3, 64, kernel_size=3, padding=1),*list(original_vgg.features.children())[1:-1]  # 保留后续层,去掉最后的MaxPool)# 插入CBAM模块self.cbam_block4 = CBAM(512)  # 对应block4输出self.cbam_block5 = CBAM(512)  # 对应block5输出# 调整分类器self.avgpool = nn.AdaptiveAvgPool2d((7, 7))  # 保证输出维度一致self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):x = self.features(x)x = self.cbam_block4(x)  # 在block4后添加x = self.cbam_block5(x)  # 在block5后添加x = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x
# 初始化模型
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = VGG16_CBAM(num_classes=10).to(device)
optimizer = optim.Adam(model.parameters(), lr=0.001)
scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', patience=3, factor=0.5)import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
import matplotlib.pyplot as plt
import time# ======================================================================
# 训练函数(适配VGG16-CBAM结构)
# ======================================================================
def set_trainable_layers_vgg(model, trainable_parts):"""设置VGG16-CBAM模型的可训练层"""print(f"\n---> 解冻以下部分并设为可训练: {trainable_parts}")for name, param in model.named_parameters():param.requires_grad = Falsefor part in trainable_parts:if part in name:param.requires_grad = Truebreakdef train_vgg_staged_finetuning(model, criterion, train_loader, test_loader, device, epochs=50):optimizer = Nonescheduler = None# 初始化历史记录all_iter_losses, iter_indices = [], []train_acc_history, test_acc_history = [], []train_loss_history, test_loss_history = [], []for epoch in range(1, epochs + 1):epoch_start_time = time.time()# --- 阶段式解冻策略 ---if epoch == 1:print("\n" + "="*50 + "\n🚀 **阶段 1:训练CBAM模块和分类头**\n" + "="*50)set_trainable_layers_vgg(model, ["cbam", "classifier"])optimizer = optim.Adam([{'params': [p for n,p in model.named_parameters() if 'cbam' in n], 'lr': 1e-4},{'params': [p for n,p in model.named_parameters() if 'classifier' in n], 'lr': 1e-3}])scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=5, gamma=0.5)elif epoch == 11:print("\n" + "="*50 + "\n✈️ **阶段 2:解冻高层卷积层 (features.16及以上)**\n" + "="*50)set_trainable_layers_vgg(model, ["cbam", "classifier", "features.16", "features.23", "features.30"])optimizer = optim.Adam([{'params': [p for n,p in model.named_parameters() if 'features.0' in n or 'features.5' in n or 'features.10' in n], 'lr': 1e-5},  # 低层保持冻结{'params': [p for n,p in model.named_parameters() if 'features.16' in n or 'features.23' in n or 'features.30' in n], 'lr': 1e-4},  # 高层{'params': [p for n,p in model.named_parameters() if 'cbam' in n], 'lr': 1e-4},{'params': [p for n,p in model.named_parameters() if 'classifier' in n], 'lr': 1e-4}])scheduler = optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max', patience=3, factor=0.5)elif epoch == 26:print("\n" + "="*50 + "\n🛰️ **阶段 3:解冻所有层,全局微调**\n" + "="*50)for param in model.parameters():param.requires_grad = Trueoptimizer = optim.Adam([{'params': model.features[:10].parameters(), 'lr': 1e-6},  # 最底层{'params': model.features[10:20].parameters(), 'lr': 1e-5},  # 中间层{'params': model.features[20:].parameters(), 'lr': 1e-4},  # 高层{'params': [p for n,p in model.named_parameters() if 'cbam' in n], 'lr': 1e-4},{'params': model.classifier.parameters(), 'lr': 1e-4}])scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max=epochs-25)# --- 训练循环 ---model.train()running_loss, correct, total = 0.0, 0, 0for batch_idx, (data, target) in enumerate(train_loader):data, target = data.to(device), target.to(device)optimizer.zero_grad()output = model(data)loss = criterion(output, target)loss.backward()optimizer.step()# 记录迭代损失iter_loss = loss.item()all_iter_losses.append(iter_loss)iter_indices.append((epoch - 1) * len(train_loader) + batch_idx + 1)running_loss += iter_loss_, predicted = output.max(1)total += target.size(0)correct += predicted.eq(target).sum().item()if (batch_idx + 1) % 100 == 0:print(f'Epoch: {epoch}/{epochs} | Batch: {batch_idx+1}/{len(train_loader)} 'f'| Loss: {iter_loss:.4f} | Avg Loss: {running_loss/(batch_idx+1):.4f}')epoch_train_loss = running_loss / len(train_loader)epoch_train_acc = 100. * correct / totaltrain_loss_history.append(epoch_train_loss)train_acc_history.append(epoch_train_acc)# --- 测试循环 ---model.eval()test_loss, correct_test, total_test = 0, 0, 0with torch.no_grad():for data, target in test_loader:data, target = data.to(device), target.to(device)output = model(data)test_loss += criterion(output, target).item()_, predicted = output.max(1)total_test += target.size(0)correct_test += predicted.eq(target).sum().item()epoch_test_loss = test_loss / len(test_loader)epoch_test_acc = 100. * correct_test / total_testtest_loss_history.append(epoch_test_loss)test_acc_history.append(epoch_test_acc)# 学习率调度if epoch >= 11 and isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau):scheduler.step(epoch_test_acc)elif scheduler is not None:scheduler.step()# 打印epoch结果print(f'Epoch {epoch}/{epochs} | Time: {time.time()-epoch_start_time:.1f}s | 'f'Train Loss: {epoch_train_loss:.4f} | Test Loss: {epoch_test_loss:.4f} | 'f'Train Acc: {epoch_train_acc:.2f}% | Test Acc: {epoch_test_acc:.2f}%')# 绘制结果plot_iter_losses(all_iter_losses, iter_indices)plot_epoch_metrics(train_acc_history, test_acc_history, train_loss_history, test_loss_history)return epoch_test_acc# ======================================================================
# 绘图函数(与之前相同)
# ======================================================================
def plot_iter_losses(losses, indices):plt.figure(figsize=(10, 4))plt.plot(indices, losses, 'b-', alpha=0.7, label='Iteration Loss')plt.xlabel('Iteration(Batch序号)')plt.ylabel('损失值')plt.title('每个 Iteration 的训练损失')plt.legend()plt.grid(True)plt.tight_layout()plt.show()def plot_epoch_metrics(train_acc, test_acc, train_loss, test_loss):epochs = range(1, len(train_acc) + 1)plt.figure(figsize=(12, 4))plt.subplot(1, 2, 1)plt.plot(epochs, train_acc, 'b-', label='训练准确率')plt.plot(epochs, test_acc, 'r-', label='测试准确率')plt.xlabel('Epoch')plt.ylabel('准确率 (%)')plt.title('训练和测试准确率')plt.legend(); plt.grid(True)plt.subplot(1, 2, 2)plt.plot(epochs, train_loss, 'b-', label='训练损失')plt.plot(epochs, test_loss, 'r-', label='测试损失')plt.xlabel('Epoch')plt.ylabel('损失值')plt.title('训练和测试损失')plt.legend(); plt.grid(True)plt.tight_layout()plt.show()# ======================================================================
# 执行训练
# ======================================================================
if __name__ == "__main__":device = torch.device("cuda" if torch.cuda.is_available() else "cpu")# 初始化模型model = VGG16_CBAM(num_classes=10).to(device)  # 假设CIFAR-10分类criterion = nn.CrossEntropyLoss()# 数据加载器 (需根据实际数据集实现)# train_loader, test_loader = get_dataloaders() print("开始VGG16-CBAM的阶段式微调训练...")final_acc = train_vgg_staged_finetuning(model=model,criterion=criterion,train_loader=train_loader,test_loader=test_loader,device=device,epochs=50)print(f"训练完成!最终测试准确率: {final_acc:.2f}%")# torch.save(model.state_dict(), 'vgg16_cbam_finetuned.pth')

why? 难道残差网络比vgg16更适合训练cifar数据集吗?

今日作业:

import os
import pandas as pd
import numpy as np
from sklearn.model_selection import train_test_split
from torch.utils.data import Dataset, DataLoader
from PIL import Image
import torch
from torchvision import transforms
import torch.nn as nn
import torch.optim as optim
import matplotlib.pyplot as plt# 1. 读标签并映射 0/1
df = pd.read_csv('archive/malignancy.csv')# 2. 按 patch_id 划 train/val
ids    = df['NoduleID'].values
labels = df['malignancy'].values
train_ids, val_ids = train_test_split(ids, test_size=0.2, random_state=42, stratify=labels
)
train_df = df[df['NoduleID'].isin(train_ids)].reset_index(drop=True)
val_df   = df[df['NoduleID'].isin(val_ids)].reset_index(drop=True)# 3. Dataset:多页 TIFF 按页读取
class LungTBDataset(Dataset):def __init__(self, tif_path, df, transform=None):self.tif_path = tif_pathself.df = dfself.transform = transformdef __len__(self):return len(self.df)def __getitem__(self, idx):row = self.df.iloc[idx]pid = int(row['NoduleID'])label = int(row['malignancy'])try:with Image.open(self.tif_path) as img:# 检查 pid 是否超出实际帧数total_pages = sum(1 for _ in ImageSequence.Iterator(img))if pid >= total_pages:pid = total_pages - 1  # 取最后一帧img.seek(pid)img = img.convert('RGB')except Exception as e:# 返回黑色占位图img = Image.new('RGB', (224, 224), (0, 0, 0))if self.transform:img = self.transform(img)return img, label# 4. 变换 & DataLoader
transform = transforms.Compose([transforms.Resize((224,224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485,0.456,0.406],std =[0.229,0.224,0.225])
])
train_ds = LungTBDataset('archive/ct_tiles.tif', train_df, transform)
val_ds   = LungTBDataset('archive/ct_tiles.tif',   val_df, transform)
train_loader = DataLoader(train_ds, batch_size=16, shuffle=True,  num_workers=0, pin_memory=True)
val_loader   = DataLoader(val_ds,   batch_size=16, shuffle=False, num_workers=0, pin_memory=True)import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import models
from torch.optim.lr_scheduler import ReduceLROnPlateau# ==================== 1. 定义VGG16-CBAM模型 ====================
class ChannelAttention(nn.Module):def __init__(self, in_planes, ratio=16):super().__init__()self.avg_pool = nn.AdaptiveAvgPool2d(1)self.max_pool = nn.AdaptiveMaxPool2d(1)self.fc = nn.Sequential(nn.Conv2d(in_planes, in_planes//ratio, 1, bias=False),nn.ReLU(),nn.Conv2d(in_planes//ratio, in_planes, 1, bias=False))self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = self.fc(self.avg_pool(x))max_out = self.fc(self.max_pool(x))out = avg_out + max_outreturn self.sigmoid(out)class SpatialAttention(nn.Module):def __init__(self, kernel_size=7):super().__init__()self.conv = nn.Conv2d(2, 1, kernel_size, padding=kernel_size//2, bias=False)self.sigmoid = nn.Sigmoid()def forward(self, x):avg_out = torch.mean(x, dim=1, keepdim=True)max_out, _ = torch.max(x, dim=1, keepdim=True)x = torch.cat([avg_out, max_out], dim=1)x = self.conv(x)return self.sigmoid(x)class CBAM(nn.Module):def __init__(self, in_planes, ratio=16, kernel_size=7):super().__init__()self.ca = ChannelAttention(in_planes, ratio)self.sa = SpatialAttention(kernel_size)def forward(self, x):x = x * self.ca(x)x = x * self.sa(x)return x# ==== 定义VGG16-CBAM模型 ====
class VGG16_CBAM(nn.Module):def __init__(self, num_classes=2, pretrained=True):super().__init__()original_vgg = models.vgg16(pretrained=pretrained)# 特征提取部分self.features = original_vgg.features# 在block4和block5后插入CBAMself.cbam_block4 = CBAM(512)  # 对应block4输出self.cbam_block5 = CBAM(512)  # 对应block5输出# 分类器部分self.avgpool = nn.AdaptiveAvgPool2d((7, 7))self.classifier = nn.Sequential(nn.Linear(512 * 7 * 7, 4096),nn.ReLU(True),nn.Dropout(),nn.Linear(4096, 4096),nn.ReLU(True),nn.Dropout(),nn.Linear(4096, num_classes),)def forward(self, x):# 前向传播过程x = self.features(x)x = self.cbam_block4(x)  # 在block4后应用CBAMx = self.cbam_block5(x)  # 在block5后应用CBAMx = self.avgpool(x)x = torch.flatten(x, 1)x = self.classifier(x)return x
# ==================== 2. 训练策略配置 ====================
def set_trainable_layers(model, trainable_layers):"""阶段式解冻层"""for name, param in model.named_parameters():param.requires_grad = any(layer in name for layer in trainable_layers)def get_optimizer(model, lr_dict):"""差异化学习率优化器"""params = []for name, param in model.named_parameters():if param.requires_grad:# 不同层组设置不同学习率lr = lr_dict['features'] if 'features' in name else lr_dict['classifier']params.append({'params': param, 'lr': lr})return optim.Adam(params)# ==================== 3. 训练流程 ====================
def train_model(model, train_loader, val_loader, num_epochs=10):device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')model = model.to(device)# 阶段式训练配置training_phases = [{'name': 'Phase1-Classifier', 'train_layers': ['classifier'], 'epochs': 2, 'lr': {'features': 1e-5, 'classifier': 1e-4}},{'name': 'Phase2-Conv5+CBAM', 'train_layers': ['features.24', 'features.25', 'features.26', 'features.27', 'features.28', 'classifier'], 'epochs': 3, 'lr': {'features': 5e-5, 'classifier': 1e-4}},{'name': 'Phase3-Conv4+CBAM', 'train_layers': ['features.16', 'features.17', 'features.18', 'features.19', 'features.20', 'features.21', 'features.22', 'features.23', 'features.24', 'features.25', 'features.26', 'features.27', 'features.28', 'classifier'], 'epochs': 3, 'lr': {'features': 1e-4, 'classifier': 1e-4}},{'name': 'Phase4-FullModel', 'train_layers': ['features', 'classifier'], 'epochs': 2, 'lr': {'features': 2e-4, 'classifier': 1e-4}}]criterion = nn.CrossEntropyLoss()best_acc = 0.0for phase in training_phases:print(f"\n=== {phase['name']} ===")set_trainable_layers(model, phase['train_layers'])optimizer = get_optimizer(model, phase['lr'])scheduler = ReduceLROnPlateau(optimizer, mode='max', patience=1, factor=0.5)for epoch in range(phase['epochs']):# 训练阶段model.train()running_loss = 0.0for inputs, labels in train_loader:inputs, labels = inputs.to(device), labels.to(device)optimizer.zero_grad()outputs = model(inputs)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item() * inputs.size(0)epoch_loss = running_loss / len(train_loader.dataset)# 验证阶段model.eval()correct = 0with torch.no_grad():for inputs, labels in val_loader:inputs, labels = inputs.to(device), labels.to(device)outputs = model(inputs)_, preds = torch.max(outputs, 1)correct += (preds == labels).sum().item()epoch_acc = correct / len(val_loader.dataset)print(f'Epoch {epoch+1}/{phase["epochs"]} - Loss: {epoch_loss:.4f} Acc: {epoch_acc:.4f}')scheduler.step(epoch_acc)# 保存最佳模型if epoch_acc > best_acc:best_acc = epoch_acc# torch.save(model.state_dict(), 'best_vgg16_cbam.pth')print(f'Best Validation Accuracy: {best_acc:.4f}')# ==================== 4. 初始化并训练模型 ====================
model = VGG16_CBAM(num_classes=2, pretrained=True)
train_model(model, train_loader, val_loader, num_epochs=10)

   感觉可能是数据集的问题

浙大疏锦行-CSDN博客

http://www.xdnf.cn/news/979813.html

相关文章:

  • 机器学习核心概念速览
  • 基于ElasticSearch的法律法规检索系统架构实践
  • livetalking实时数字人多并发
  • uni-app项目实战笔记1--创建项目和实现首页轮播图功能
  • 告别excel:AI 驱动的数据分析指南
  • elementui使用Layout布局-对齐方式
  • input+disabled/readonly问题
  • Vue3 + TypeScript + Element Plus 表格行按钮不触发 row-click 事件、不触发勾选行,只执行按钮的 click 事件
  • Explore Image Deblurring via Encoded Blur Kernel Space论文阅读
  • 时序数据库IoTDB数据模型建模实例详解
  • Jmeter中变量如何使用?
  • MySQL 三表 JOIN 执行机制深度解析
  • 基础数论一一同余定理
  • Qt 动态插件系统QMetaObject::invokeMethod
  • 【docker】docker registry搭建私有镜像仓库
  • 开源 java android app 开发(十二)封库.aar
  • SD-WAN 技术如何助力工业物联网(IIoT)数据传输?深度解析传统方案对比与应用实践
  • Chrome 优质插件计划
  • 智慧农业物联网实训中心建设方案
  • 趋境科技英特尔生态沙龙举办,打通大模型私有化“最后一公里”
  • 当简约美学融入小程序 UI 设计:开启高效交互新篇
  • 【Java学习日记38】:C语言 fabs 与 Java abs 绝对值函数
  • element plus的el-form重置无效
  • CavityPlus: 北大团队研发的综合性蛋白质结合位点检测及功能分析网络服务器
  • 【python】预测投保人医疗费用,附insurance.csv数据集
  • 嵌入式系统内核镜像相关(三)
  • React 状态管理指南:Redux 原理与优化策略
  • 避坑:启动sdk-c demo master需要注意的事情
  • 【AI】模型vs算法(以自动驾驶为例)
  • 基于React Native的HarmonyOS 5.0休闲娱乐类应用开发