全微分证明 链式法则 乘法法则 除法法则
z = f ( u ( x , y ) , v ( x , y ) ) z = f(u(x, y), v(x, y)) z=f(u(x,y),v(x,y))
的全微分(Total Differential)、链式法则(Chain Rule),以及它在涉及乘法法则和除法法则下的应用。
🧠 一、函数背景
你给出的函数是一个复合函数:
- 外层函数: z = f ( u , v ) z = f(u, v) z=f(u,v)
- 内层函数: u = u ( x , y ) , v = v ( x , y ) u = u(x, y),\quad v = v(x, y) u=u(x,y),v=v(x,y)
也就是说, z z z 是 x , y x, y x,y 的间接函数。
📘 二、链式法则(Chain Rule)
对于复合函数 z = f ( u ( x , y ) , v ( x , y ) ) z = f(u(x,y), v(x,y)) z=f(u(x,y),v(x,y)),我们求其相对于 x x x 和 y y y 的偏导时,应用链式法则:
∂ z ∂ x = ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} ∂x∂z=∂u∂f⋅∂x∂u+∂v∂f⋅∂x∂v
∂ z ∂ y = ∂ f ∂ u ⋅ ∂ u ∂ y + ∂ f ∂ v ⋅ ∂ v ∂ y \frac{\partial z}{\partial y} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} ∂y∂z=∂u∂f⋅∂y∂u+∂v∂f⋅∂y∂v
📗 三、全微分公式(Total Differential)
全微分 d z dz dz 是表示函数小变化的线性近似。由链式法则导出:
d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy dz=∂x∂zdx+∂y∂zdy
代入链式法则的结果:
d z = ( ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x ) d x + ( ∂ f ∂ u ⋅ ∂ u ∂ y + ∂ f ∂ v ⋅ ∂ v ∂ y ) d y dz = \left( \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \right) dx + \left( \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \right) dy dz=(∂u∂f⋅∂x∂u+∂v∂f⋅∂x∂v)dx+(∂u∂f⋅∂y∂u+∂v∂f⋅∂y∂v)dy
也可以整理成:
d z = ∂ f ∂ u ⋅ d u + ∂ f ∂ v ⋅ d v dz = \frac{\partial f}{\partial u} \cdot du + \frac{\partial f}{\partial v} \cdot dv dz=∂u∂f⋅du+∂v∂f⋅dv
其中: d u = ∂ u ∂ x d x + ∂ u ∂ y d y , d v = ∂ v ∂ x d x + ∂ v ∂ y d y \text{其中:}\quad du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy,\quad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy 其中:du=∂x∂udx+∂y∂udy,dv=∂x∂vdx+∂y∂vdy
📘 全微分证明
根据全微分定义:
d z = ∂ z ∂ x d x + ∂ z ∂ y d y dz = \frac{\partial z}{\partial x} dx + \frac{\partial z}{\partial y} dy dz=∂x∂zdx+∂y∂zdy
把上面链式法则中的偏导数代入:
d z = ( ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x ) d x + ( ∂ f ∂ u ⋅ ∂ u ∂ y + ∂ f ∂ v ⋅ ∂ v ∂ y ) d y dz = \left( \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} \right) dx + \left( \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial y} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial y} \right) dy dz=(∂u∂f⋅∂x∂u+∂v∂f⋅∂x∂v)dx+(∂u∂f⋅∂y∂u+∂v∂f⋅∂y∂v)dy
整理得:
d z = ∂ f ∂ u ⋅ ( ∂ u ∂ x d x + ∂ u ∂ y d y ) + ∂ f ∂ v ⋅ ( ∂ v ∂ x d x + ∂ v ∂ y d y ) dz = \frac{\partial f}{\partial u} \cdot \left( \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy \right) + \frac{\partial f}{\partial v} \cdot \left( \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy \right) dz=∂u∂f⋅(∂x∂udx+∂y∂udy)+∂v∂f⋅(∂x∂vdx+∂y∂vdy)
注意:
d u = ∂ u ∂ x d x + ∂ u ∂ y d y , d v = ∂ v ∂ x d x + ∂ v ∂ y d y du = \frac{\partial u}{\partial x} dx + \frac{\partial u}{\partial y} dy,\quad dv = \frac{\partial v}{\partial x} dx + \frac{\partial v}{\partial y} dy du=∂x∂udx+∂y∂udy,dv=∂x∂vdx+∂y∂vdy
所以:
d z = ∂ f ∂ u ⋅ d u + ∂ f ∂ v ⋅ d v \boxed{dz = \frac{\partial f}{\partial u} \cdot du + \frac{\partial f}{\partial v} \cdot dv} dz=∂u∂f⋅du+∂v∂f⋅dv
✅ 全微分公式得证。
📗 三、乘法法则的推导(复合乘积函数)
设:
z = f ( u , v ) = u ( x , y ) ⋅ v ( x , y ) z = f(u, v) = u(x,y) \cdot v(x,y) z=f(u,v)=u(x,y)⋅v(x,y)
直接对 x x x 求偏导:
∂ z ∂ x = ∂ ( u v ) ∂ x = ∂ u ∂ x ⋅ v + u ⋅ ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{\partial (uv)}{\partial x} = \frac{\partial u}{\partial x} \cdot v + u \cdot \frac{\partial v}{\partial x} ∂x∂z=∂x∂(uv)=∂x∂u⋅v+u⋅∂x∂v
这其实也是链式法则的一个特例,因为:
- f ( u , v ) = u ⋅ v f(u,v) = u \cdot v f(u,v)=u⋅v
- 所以 ∂ f ∂ u = v \frac{\partial f}{\partial u} = v ∂u∂f=v, ∂ f ∂ v = u \frac{\partial f}{\partial v} = u ∂v∂f=u
所以由链式法则:
∂ z ∂ x = ∂ f ∂ u ⋅ ∂ u ∂ x + ∂ f ∂ v ⋅ ∂ v ∂ x = v ⋅ ∂ u ∂ x + u ⋅ ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial f}{\partial v} \cdot \frac{\partial v}{\partial x} = v \cdot \frac{\partial u}{\partial x} + u \cdot \frac{\partial v}{\partial x} ∂x∂z=∂u∂f⋅∂x∂u+∂v∂f⋅∂x∂v=v⋅∂x∂u+u⋅∂x∂v
全微分:
d z = v ⋅ d u + u ⋅ d v dz = v \cdot du + u \cdot dv dz=v⋅du+u⋅dv
✅ 乘法法则得证。
📕 四、除法法则的推导
设:
z = f ( u , v ) = u ( x , y ) v ( x , y ) z = f(u, v) = \frac{u(x,y)}{v(x,y)} z=f(u,v)=v(x,y)u(x,y)
对 x x x 求偏导:
使用商法则(Quotient Rule):
∂ z ∂ x = v ⋅ ∂ u ∂ x − u ⋅ ∂ v ∂ x v 2 \frac{\partial z}{\partial x} = \frac{v \cdot \frac{\partial u}{\partial x} - u \cdot \frac{\partial v}{\partial x}}{v^2} ∂x∂z=v2v⋅∂x∂u−u⋅∂x∂v
这个可以从链式法则推导:
- f ( u , v ) = u v ⇒ ∂ f ∂ u = 1 v , ∂ f ∂ v = − u v 2 f(u,v) = \frac{u}{v} \Rightarrow \frac{\partial f}{\partial u} = \frac{1}{v},\quad \frac{\partial f}{\partial v} = -\frac{u}{v^2} f(u,v)=vu⇒∂u∂f=v1,∂v∂f=−v2u
- 所以:
∂ z ∂ x = 1 v ⋅ ∂ u ∂ x − u v 2 ⋅ ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{1}{v} \cdot \frac{\partial u}{\partial x} - \frac{u}{v^2} \cdot \frac{\partial v}{\partial x} ∂x∂z=v1⋅∂x∂u−v2u⋅∂x∂v
全微分:
d z = 1 v ⋅ d u − u v 2 ⋅ d v = v ⋅ d u − u ⋅ d v v 2 dz = \frac{1}{v} \cdot du - \frac{u}{v^2} \cdot dv = \frac{v \cdot du - u \cdot dv}{v^2} dz=v1⋅du−v2u⋅dv=v2v⋅du−u⋅dv
✅ 除法法则得证。
✅ 总结表格
类型 | 表达式 | 导数/微分公式 |
---|---|---|
链式法则 | z = f ( u ( x , y ) , v ( x , y ) ) z = f(u(x,y), v(x,y)) z=f(u(x,y),v(x,y)) | ∂ z ∂ x = ∂ f ∂ u ∂ u ∂ x + ∂ f ∂ v ∂ v ∂ x \frac{\partial z}{\partial x} = \frac{\partial f}{\partial u}\frac{\partial u}{\partial x} + \frac{\partial f}{\partial v}\frac{\partial v}{\partial x} ∂x∂z=∂u∂f∂x∂u+∂v∂f∂x∂v |
全微分 | 同上 | d z = ∂ f ∂ u ⋅ d u + ∂ f ∂ v ⋅ d v dz = \frac{\partial f}{\partial u} \cdot du + \frac{\partial f}{\partial v} \cdot dv dz=∂u∂f⋅du+∂v∂f⋅dv |
乘法法则 | z = u ⋅ v z = u \cdot v z=u⋅v | d z = v ⋅ d u + u ⋅ d v dz = v \cdot du + u \cdot dv dz=v⋅du+u⋅dv |
除法法则 | z = u v z = \frac{u}{v} z=vu | d z = v ⋅ d u − u ⋅ d v v 2 dz = \frac{v \cdot du - u \cdot dv}{v^2} dz=v2v⋅du−u⋅dv |