目录
- 一、算法实现伪代码
-
- 二、系统模块详细流程图
- 1. 数据预处理系统
- 2. 预测模型系统
- 3. 术后护理系统
- 三、系统集成方案及流程图
-
- 四、关键技术说明
一、算法实现伪代码
1. 数据预处理模块
def preprocess_data(raw_data): cleaned_data = remove_missing_and_abnormal(raw_data) normalized_data = normalize_features(cleaned_data) clinical_features = extract_clinical_features(normalized_data) image_features = extract_image_features(normalized_data["images"]) temporal_features = generate_temporal_features(normalized_data["time_series"]) combined_features = merge_features([clinical_features, image_features, temporal_features]) return combined_features
2. 大模型训练与预测
def train_predictive_model(training_data, validation_data): model = HybridModel(input_dim=training_data.shape[1], num_classes=2) for epoch in range(MAX_EPOCHS): for batch in training_data: logits = model.forward(batch) loss = compute_loss(logits, batch.labels) model.backward(loss) model.optimizer.step() val_loss = evaluate_model(model, validation_data) if val_loss < best_loss: best_loss = val_loss save_model(model, "best_model.pth") return model def predict(model, input_data): processed_data = preprocess_data(input_data) logits = model.forward(processed_data) probabilities = softmax(logits) prediction = threshold_prediction(probabilities, threshold=0.5) return prediction
二、系统模块详细流程图
1. 数据预处理系统