当前位置: 首页 > news >正文

cnn训练并用grad-cam可视化

 使用大米图片训练集,包含五个文件,分别是5种品牌的大米,使用cnn进行分类训练。

  • -Arborio/ :代表 Arborio 品种的大米图像数据,根据 Rice_Citation_Request.txt 文件可知,该数据集中包含 Arborio 品种的大米图像。
  •  Basmati/ :代表 Basmati 品种的大米图像数据,同样是数据集中 Basmati 品种大米的图像集合。
  •  Ipsala/ :代表 Ipsala 品种的大米图像数据,该文件夹下存储了大量 Ipsala 品种大米的图像文件。
  •  Jasmine/ :代表 Jasmine 品种的大米图像数据,是 Jasmine 品种大米的图像数据集。
  •  Karacadag/ :代表 Karacadag 品种的大米图像数据,包含该品种大米的相关图像。

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.models import resnet18
import cv2
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt# 数据预处理
transform = transforms.Compose([transforms.Resize((224, 224)),transforms.ToTensor(),transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
])# 加载数据集
data_dir = 'e:/2025_python/Rice_Image_Dataset'
train_dataset = datasets.ImageFolder(root=data_dir, transform=transform)
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True)# 定义 CNN 模型
class SimpleCNN(nn.Module):def __init__(self):super(SimpleCNN, self).__init__()self.conv1 = nn.Conv2d(3, 16, kernel_size=3, padding=1)self.conv2 = nn.Conv2d(16, 32, kernel_size=3, padding=1)self.pool = nn.MaxPool2d(2, 2)self.fc1 = nn.Linear(32 * 56 * 56, 128)self.fc2 = nn.Linear(128, len(train_dataset.classes))def forward(self, x):x = self.pool(F.relu(self.conv1(x)))x = self.pool(F.relu(self.conv2(x)))x = x.view(-1, 32 * 56 * 56)x = F.relu(self.fc1(x))x = self.fc2(x)return x# 初始化模型、损失函数和优化器
model = SimpleCNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)# 训练模型
num_epochs = 10
for epoch in range(num_epochs):running_loss = 0.0for i, (images, labels) in enumerate(train_loader):optimizer.zero_grad()outputs = model(images)loss = criterion(outputs, labels)loss.backward()optimizer.step()running_loss += loss.item()print(f'Epoch {epoch + 1}, Loss: {running_loss / len(train_loader)}')# Grad - CAM 实现
def grad_cam(model, img, target_layer):model.eval()img = img.unsqueeze(0)img.requires_grad_()feature_maps = []gradients = []def forward_hook(module, input, output):feature_maps.append(output)def backward_hook(module, grad_input, grad_output):gradients.append(grad_output[0])hook = target_layer.register_forward_hook(forward_hook)hook_backward = target_layer.register_backward_hook(backward_hook)output = model(img)pred = torch.argmax(output, dim=1)output[0, pred].backward()hook.remove()hook_backward.remove()feature_map = feature_maps[0][0]gradient = gradients[0][0]weights = torch.mean(gradient, dim=(1, 2))cam = torch.zeros(feature_map.shape[1:], dtype=torch.float32)for i, w in enumerate(weights):cam += w * feature_map[i, :, :]cam = torch.relu(cam)cam = cam.detach().numpy()cam = cv2.resize(cam, (img.shape[3], img.shape[2]))cam = (cam - np.min(cam)) / (np.max(cam) - np.min(cam))return cam# 选择一张图片进行 Grad - CAM 可视化
sample_img, _ = train_dataset[0]
cam = grad_cam(model, sample_img, model.conv2)# 可视化结果
img_np = sample_img.permute(1, 2, 0).numpy()
img_np = (img_np - np.min(img_np)) / (np.max(img_np) - np.min(img_np))
cam = np.uint8(255 * cam)
heatmap = cv2.applyColorMap(cam, cv2.COLORMAP_JET)
superimposed_img = cv2.addWeighted(np.uint8(255 * img_np), 0.6, heatmap, 0.4, 0)plt.imshow(cv2.cvtColor(superimposed_img, cv2.COLOR_BGR2RGB))
plt.axis('off')
plt.show()

@浙大疏锦行

http://www.xdnf.cn/news/768295.html

相关文章:

  • 基于遥感图像深度学习的海洋测深
  • 2024年数维杯国际大学生数学建模挑战赛C题时间信号脉冲定时噪声抑制与大气时延抑制模型解题全过程论文及程序
  • 题目 3230: 蓝桥杯2024年第十五届省赛真题-星际旅行
  • [蓝桥杯]约瑟夫环
  • web架构2------(nginx多站点配置,include配置文件,日志,basic认证,ssl认证)
  • 2025年5月24日系统架构设计师考试题目回顾
  • 【RAG 应用的可视化框架】
  • 【C++】类的构造函数
  • 【iOS(swift)笔记-13】App版本不升级时本地数据库sqlite更新逻辑一
  • 软件测评师教程 第2章 软件测试基础 笔记
  • 大数据-275 Spark MLib - 基础介绍 机器学习算法 集成学习 随机森铃 Bagging Boosting
  • 【C++进阶篇】C++11新特性(上篇)
  • 【笔记】在 Clang 工具链中降级 NumPy 到 2.2.4
  • JavaWeb预习(jsp)
  • 【AI智能体】Spring AI MCP 从使用到操作实战详解
  • 手机隐藏玩法有哪些?
  • 从线性方程组角度理解公式 s=n−r(3E−A)
  • Android Studio 配置之gitignore
  • Day43
  • 九(3).引用作为方法别名返回
  • 抖音商城抓包 分析
  • LangChain输出格式化实践:提升测试工程师LLM开发效率的完整指南
  • 类和对象:实现日期类
  • mybatisplus的总结
  • 消除F/1噪声
  • Spring Boot 3.X 下Redis缓存的尝试(一):初步尝试
  • CSS 3D 变换中z-index失效问题
  • Ubuntu上进行VS Code的配置
  • 简单工厂模式
  • Spring Boot 3.X 下Redis缓存的尝试(二):自动注解实现自动化缓存操作