当前位置: 首页 > news >正文

[yolov11改进系列]基于yolov11引入特征增强注意力机制ADNet的python源码+训练源码

[ADNet介绍]

1. ADNet简介-Attention-guided Denoising Convolutional Neural Network(ADNet)
ADNet的稀疏块,特征增强块,注意力块和重建块实现高效图像去噪,旨在解决合成噪声图像,真实噪声图像和盲去噪。通过注意力机制提升性能,聚焦于相关特征,抑制无关噪声。其主要由四个模块:

组稀疏块(sparse Block,SB):通过使用膨胀卷积和普通卷积来去除噪声,在性能和效率之间取得平衡
特征增强块(Feature Enhanchement Block, FEB):通过长路径整合全局和局部特征信息,以增强去噪模型的表达来进行图像去噪。
SB通过使用膨胀卷积和普通卷积来去除噪声,在性能和效率之间取得平衡。FEB通过长路径整合全局和局部特征信息,以增强去噪模型的表达能力。

注意力块(Attention Block, AB):细致的提取复杂背景中隐藏的噪声信息,这对于复杂的噪声图像,特别是实际噪声图像和盲去噪非常有效
FEB与AB结合使用,提高了效率并降低了训练去噪模型的复杂性

重建块(Reconstruction Block, RB):通过获取的噪声映射和给定的噪声图像来构建干净图像
随着网络深度的增加,浅层对深层的影响会减弱,受到这一事实的启发,本文提出了一种注意力引导的去噪卷积神经网络(ADNet)。旨在解决合成噪声图像,真实噪声图像和盲去噪的挑战。通过注意力机制提出性能,聚焦于相关特征,抑制无关噪声。

2. ADNet的主要优势
增强的表达能力:通过FEB整合全局和局部特征,提升模型捕捉重要细节和上下文的能力

注意力机制:通过使用注意力块,模型能够聚焦于相关特征,显著提高去噪性能,特别是在复杂场景中

效率与性能平衡:稀疏块确保模型在保持去噪效果的同时,保持计算效率

稳健的重建能力:重建块确保最终输出为高质量的干净图像,噪声伪影最小

【yolov11框架介绍】

2024 年 9 月 30 日,Ultralytics 在其活动 YOLOVision 中正式发布了 YOLOv11。YOLOv11 是 YOLO 的最新版本,由美国和西班牙的 Ultralytics 团队开发。YOLO 是一种用于基于图像的人工智能的计算机模

Ultralytics YOLO11 概述

YOLO11 是Ultralytics YOLO 系列实时物体检测器的最新版本,以尖端的精度、速度和效率重新定义了可能性。基于先前 YOLO 版本的令人印象深刻的进步,YOLO11 在架构和训练方法方面引入了重大改进,使其成为各种计算机视觉任务的多功能选择。

Key Features 主要特点

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂任务性能。
  • 针对效率和速度进行优化:YOLO11 引入了精致的架构设计和优化的训练管道,提供更快的处理速度并保持准确性和性能之间的最佳平衡。
  • 使用更少的参数获得更高的精度:随着模型设计的进步,YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),同时使用的参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以无缝部署在各种环境中,包括边缘设备、云平台以及支持NVIDIA GPU的系统,确保最大的灵活性。
  • 支持的任务范围广泛:无论是对象检测、实例分割、图像分类、姿态估计还是定向对象检测 (OBB),YOLO11 旨在应对各种计算机视觉挑战。

与之前的版本相比,Ultralytics YOLO11 有哪些关键改进?

Ultralytics YOLO11 与其前身相比引入了多项重大进步。主要改进包括:

  • 增强的特征提取:YOLO11采用改进的主干和颈部架构,增强了特征提取能力,以实现更精确的目标检测。
  • 优化的效率和速度:精细的架构设计和优化的训练管道可提供更快的处理速度,同时保持准确性和性能之间的平衡。
  • 使用更少的参数获得更高的精度:YOLO11m 在 COCO 数据集上实现了更高的平均精度(mAP),参数比 YOLOv8m 少 22%,从而在不影响精度的情况下提高计算效率。
  • 跨环境适应性:YOLO11可以跨各种环境部署,包括边缘设备、云平台和支持NVIDIA GPU的系统。
  • 支持的任务范围广泛:YOLO11 支持多种计算机视觉任务,例如对象检测、实例分割、图像分类、姿态估计和定向对象检测 (OBB)

【测试环境】

windows10 x64

ultralytics==8.3.0

torch==2.3.1

【改进流程】

1. 新增ADNet.py实现骨干网络(代码太多,核心模块源码请参考改进步骤.docx)然后在同级目录下面创建一个__init___.py文件写代码

from .ADNet import *

2. 文件修改步骤

修改tasks.py文件

创建模型配置文件

yolo11-ACmix.yaml内容如下:

# Ultralytics YOLO 🚀, AGPL-3.0 license
# YOLO11 object detection model with P3-P5 outputs. For Usage examples see https://docs.ultralytics.com/tasks/detect# Parameters
nc: 80 # number of classes
scales: # model compound scaling constants, i.e. 'model=yolo11n.yaml' will call yolo11.yaml with scale 'n'# [depth, width, max_channels]n: [0.50, 0.25, 1024] # summary: 319 layers, 2624080 parameters, 2624064 gradients, 6.6 GFLOPss: [0.50, 0.50, 1024] # summary: 319 layers, 9458752 parameters, 9458736 gradients, 21.7 GFLOPsm: [0.50, 1.00, 512] # summary: 409 layers, 20114688 parameters, 20114672 gradients, 68.5 GFLOPsl: [1.00, 1.00, 512] # summary: 631 layers, 25372160 parameters, 25372144 gradients, 87.6 GFLOPsx: [1.00, 1.50, 512] # summary: 631 layers, 56966176 parameters, 56966160 gradients, 196.0 GFLOPs# YOLO11n backbone
backbone:# [from, repeats, module, args]- [-1, 1, ADNet, []] # 0-P1/2- [-1, 1, Conv, [64, 3, 2]] # 1-P1/2- [-1, 1, Conv, [128, 3, 2]] # 2-P2/4- [-1, 2, C3k2, [256, False, 0.25]]- [-1, 1, Conv, [256, 3, 2]] # 4-P3/8- [-1, 2, C3k2, [512, False, 0.25]]- [-1, 1, Conv, [512, 3, 2]] # 6-P4/16- [-1, 2, C3k2, [512, True]]- [-1, 1, Conv, [1024, 3, 2]] # 8-P5/32- [-1, 2, C3k2, [1024, True]]- [-1, 1, SPPF, [1024, 5]] # 10- [-1, 2, C2PSA, [1024]] # 11# YOLO11n head
head:- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 7], 1, Concat, [1]] # cat backbone P4- [-1, 2, C3k2, [512, False]] # 14- [-1, 1, nn.Upsample, [None, 2, "nearest"]]- [[-1, 5], 1, Concat, [1]] # cat backbone P3- [-1, 2, C3k2, [256, False]] # 17 (P3/8-small)- [-1, 1, Conv, [256, 3, 2]]- [[-1, 14], 1, Concat, [1]] # cat head P4- [-1, 2, C3k2, [512, False]] # 20 (P4/16-medium)- [-1, 1, Conv, [512, 3, 2]]- [[-1, 11], 1, Concat, [1]] # cat head P5- [-1, 2, C3k2, [1024, True]] # 23 (P5/32-large)- [[17, 20, 23], 1, Detect, [nc]] # Detect(P3, P4, P5)
3. 验证集成

使用新建的yaml配置文件启动训练任务:

from ultralytics import YOLOif __name__ == '__main__':model = YOLO('yolo11-ADNet.yaml')  # build from YAML and transfer weights# Train the modelresults = model.train(data='coco128.yaml',epochs=100, imgsz=640, batch=8, device=0, workers=1, save=True,resume=False)

成功集成后,训练日志中将显示ADNet模块的初始化信息,表明已正确加载到模型中。

【训练说明】

第一步:首先安装好yolov11必要模块,可以参考yolov11框架安装流程,然后卸载官方版本pip uninstall ultralytics,最后安装改进的源码pip install .
第二步:将自己数据集按照dataset文件夹摆放,要求文件夹名字都不要改变
第三步:分别打开train.py,coco128.yaml和模型参数yaml文件修改必要的参数,最后执行python train.py即可训练

【提供文件】

├── [官方源码]ultralytics-8.3.0.zip
├── train/
│   ├── coco128.yaml
│   ├── dataset/
│   │   ├── train/
│   │   │   ├── images/
│   │   │   │   ├── firc_pic_1.jpg
│   │   │   │   ├── firc_pic_10.jpg
│   │   │   │   ├── firc_pic_11.jpg
│   │   │   │   ├── firc_pic_12.jpg
│   │   │   │   ├── firc_pic_13.jpg
│   │   │   ├── labels/
│   │   │   │   ├── classes.txt
│   │   │   │   ├── firc_pic_1.txt
│   │   │   │   ├── firc_pic_10.txt
│   │   │   │   ├── firc_pic_11.txt
│   │   │   │   ├── firc_pic_12.txt
│   │   │   │   ├── firc_pic_13.txt
│   │   └── val/
│   │       ├── images/
│   │       │   ├── firc_pic_100.jpg
│   │       │   ├── firc_pic_81.jpg
│   │       │   ├── firc_pic_82.jpg
│   │       │   ├── firc_pic_83.jpg
│   │       │   ├── firc_pic_84.jpg
│   │       ├── labels/
│   │       │   ├── firc_pic_100.txt
│   │       │   ├── firc_pic_81.txt
│   │       │   ├── firc_pic_82.txt
│   │       │   ├── firc_pic_83.txt
│   │       │   ├── firc_pic_84.txt
│   ├── train.py
│   ├── yolo11-ADNet.yaml
│   └── 训练说明.txt
├── [改进源码]ultralytics-8.3.0.zip
├── 改进原理.docx
└── 改进流程.docx

 【常见问题汇总】
问:为什么我训练的模型epoch显示的map都是0或者map精度很低?
回答:由于源码改进过,因此不能直接从官方模型微调,而是从头训练,这样学习特征能力会很弱,需要训练很多epoch才能出现效果。此外由于改进的源码框架并不一定能够保证会超过官方精度,而且也有可能会存在远远不如官方效果,甚至精度会很低。这说明改进的框架并不能取得很好效果。所以说对于框架改进只是提供一种可行方案,至于改进后能不能取得很好map还需要结合实际训练情况确认,当然也不排除数据集存在问题,比如数据集比较单一,样本分布不均衡,泛化场景少,标注框不太贴合标注质量差,检测目标很小等等原因
【重要说明】
我们只提供改进框架一种方案,并不保证能够取得很好训练精度,甚至超过官方模型精度。因为改进框架,实际是一种比较复杂流程,包括框架原理可行性,训练数据集是否合适,训练需要反正验证以及同类框架训练结果参数比较,这个是十分复杂且漫长的过程。

http://www.xdnf.cn/news/653725.html

相关文章:

  • ServletConfig 接口:Java Web ——补充
  • 使用 Kotlin 实现 Android 自定义 Lint 检查规则的步骤指南
  • Kotlin学习34-data数据类1
  • 【Java学习笔记】final关键字
  • 「Python教案」判断语句的使用
  • 《软件工程》第 13 章 - 软件维护
  • 密度矩阵重整化群——DMRG
  • 【GESP真题解析】第 9 集 GESP 二级 2023 年 9 月编程题 2:数字黑洞
  • 如何优化 Python 爬虫的速度
  • Python开发Excel批量写入工具:多文件独立配置与Tkinter界面设计
  • IP 网段
  • DeepSeek-V3-0526乍现
  • Vue2实现Office文档(docx、xlsx、pdf)在线预览
  • PDF电子发票数据提取至Excel
  • 【计算机网络】IP 协议深度解析:从基础到实战
  • LeetCode#第58题:最后一个单词的长度
  • Python网络编程深度解析
  • 游戏引擎学习第312天:跨实体手动排序
  • YOLOv1 详解:单阶段目标检测算法的里程碑
  • SAP ABAP VK11/VK12 创建销售物料价格(附源码)
  • 华润电力招聘认知能力测评及性格测评真题题库考什么?
  • ATPrompt方法:属性嵌入的文本提示学习
  • 饭卡管理系统(接口文档)
  • 对接 uniapp 通过中间层(JSBridge)集成零信任 原生androiid和ios SDK
  • 【iOS】 锁
  • 【iOS】 GCD小结
  • NTDS.dit 卷影副本提权笔记
  • sass,less是什么?为什么要使用他们?
  • [特殊字符]《Qt实战:基于QCustomPlot的装药燃面动态曲线绘制(附右键菜单/样式美化/完整源码)》
  • 华为云物联网应用接入对于API及接口调试的梳理