当前位置: 首页 > news >正文

飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)

飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)

目录

    • 飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.Matlab实现MFO-Transformer-LSTM多变量回归预测,飞蛾扑火算法优化Transformer-LSTM组合模型;MFO算法(飞蛾扑火优化算法)是一种基于自然启发的智能优化算法,由Seyedali Mirjalili及其团队于2015年提出。其灵感来源于自然界中飞蛾夜间飞行时的导航机制,特别是飞蛾如何通过横向定向的方式沿着螺旋路径向光源(如月亮或火焰)飞行的行为。

2.优化参数为:学习率,隐含层节点,正则化参数,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个特征,输出单个变量,多变量回归预测,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。

在这里插入图片描述

程序设计

  • 完整源码和数据获取方式:私信博主回复飞蛾扑火算法优化+Transformer四模型回归打包(内含MFO-Transformer-LSTM及单独模型)
----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
res = xlsread('data.xlsx');%%  数据分析
num_size = 0.7;                              % 训练集占数据集比例
outdim = 1;                                  % 最后一列为输出
num_samples = size(res, 1);                  % 样本个数
res = res(randperm(num_samples), :);         % 打乱数据集(不希望打乱时,注释该行)
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  参数设置
options = trainingOptions('adam', ...      % ADAM 梯度下降算法'MiniBatchSize', 30, ...               % 批大小,每次训练样本个数30'MaxEpochs', 100, ...                  % 最大训练次数 100'InitialLearnRate', 1e-2, ...          % 初始学习率为0.01'LearnRateSchedule', 'piecewise', ...  % 学习率下降'LearnRateDropFactor', 0.5, ...        % 学习率下降因子'LearnRateDropPeriod', 50, ...         % 经过100次训练后 学习率为 0.01 * 0.5'Shuffle', 'every-epoch', ...          % 每次训练打乱数据集'Plots', 'training-progress', ...      % 画出曲线'Verbose', false);

参考资料

[1] https://blog.csdn.net/kjm13182345320/category_11003178.html?spm=1001.2014.3001.5482
[2] https://blog.csdn.net/kjm13182345320/article/details/117378431
[3] https://blog.csdn.net/kjm13182345320/article/details/118253644

http://www.xdnf.cn/news/210349.html

相关文章:

  • 开源Kotlin从零单排0基础完美入门教程
  • 第十六届蓝桥杯 2025 C/C++组 破解信息
  • 绿色版的notepad++怎么加入到右键菜单里
  • 深度学习---pytorch搭建深度学习模型(附带图片五分类实例)
  • 【docker】启动临时MongoDB容器、挂载数据卷运行数据库服务,并通过备份文件恢复MongoDB数据库备份数据
  • MCP 架构全解析:Host、Client 与 Server 的协同机制
  • Spring MVC 中解决中文乱码问题
  • 解决STM32H743单片机USB_HOST+FATF操作usb文件
  • 代码随想录算法训练营 Day35 动态规划Ⅲ 0-1背包问题
  • Python数据处理:文件的自动化重命名与整合
  • JavaWeb:后端web基础(TomcatServletHTTP)
  • 当跨网文件传输遇上医疗级安全筛查
  • <c++>使用detectMultiScale的时候出现opencv.dll冲突
  • Docker容器资源控制--CGroup
  • 公路风险落图,道路点任意经纬度里程求解
  • 2. python协程/异步编程详解
  • 【软考-高级】【信息系统项目管理师】【论文基础】沟通管理过程输入输出及工具技术的使用方法
  • python的turtle库实现四叶草
  • Reactor框架介绍
  • Java应用8(I/O)
  • 【含文档+PPT+源码】基于SSM的电影数据挖掘与分析可视化系统设计与实现
  • Nginx 核心功能笔记
  • PyQt6基础_QThreadPool
  • 62.微服务保姆教程 (五) Seata--微服务分布式事务组件
  • 基于arduino的温湿度传感器应用
  • Apache Flink的架构设计与运行流程说明
  • Lua 第14部分 数据结构
  • 洛谷 B3644:【模板】拓扑排序 / 家谱树 ← 邻接表
  • linux修改环境变量
  • JMM中的内存屏障