当前位置: 首页 > java >正文

机器学习(7)——K均值聚类

文章目录

  • 1. K均值(K-means)聚类是什么算法?
  • 2. 核心思想
  • 2. 数学目标
  • 3. 算法步骤
    • 3.1. 选择K个初始质心:
    • 3.2.迭代优化
    • 3.3. 重复步骤2和步骤3:
  • 4. 关键参数
  • 5. 优缺点
  • 6. 改进变种
  • 7. K值选择方法
  • 8. Python示例
  • 9. 应用场景
  • 10. 注意事项
  • 11. 数学推导(质心更新)
  • 12. 总结

1. K均值(K-means)聚类是什么算法?

K均值(K-means)聚类算法是一种广泛使用的无监督学习算法,用于将数据集分成多个簇(clusters)。每个簇代表数据集中的一种内在结构,其中簇内的数据点相似度较高,而簇与簇之间的相似度较低。K均值算法的目标是最小化簇内数据点的平方误差(即簇内的方差)

2. 核心思想

K均值是一种无监督学习算法,用于将数据划分为K个簇(Cluster),目标是最小化簇内样本的平方误差和(Sum of Squared Errors, SSE)。其核心思想是:

簇内相似度高:同一簇的样本尽可能接近。

簇间相似度低:不同簇的样本尽可能远离。

2. 数学目标

最小化损失函数(SSE):
J = ∑ i = 1 K ∑ x ∈ C i ∥ x − μ i ∥ 2 J = \sum_{i=1}^{K} \sum_{x \in C_i} \|x - \mu_i\|^2 J=i=1KxCixμi2

  • C i C_i Ci:第 i i i个簇。
  • μ i μ_i μi:第 i i i 个簇的中心点(质心)。
  • ∥ x − μ i ∥ 2 \|x - \mu_i\|^2 xμi2:样本 x x x到质心的欧氏距离平方。

3. 算法步骤

3.1. 选择K个初始质心:

  • 随机选择K个数据点作为初始质心 μ 1 , μ 2 , … , μ K μ_1,μ_2,…,μ_K μ1,μ2,,μK

3.2.迭代优化

  • 分配步骤(Assignment): 分配每个数据点到最近的质心
    • 对于数据集中的每一个点,计算它与K个质心的距离,并将该点分配到距离其最近的质心所对应的簇。
    • C i = { x : ∥ x − μ i ∥ 2 ≤ ∥ x − μ j ∥ 2 , ∀ j } C_i = \{x : \|x - \mu_i\|^2 \leq \|x - \mu_j\|^2, \forall j\} Ci={x:xμi2xμj2,j}
  • 更新步骤(Update):重新计算质心
    • 计算每个簇中所有点的均值,将该均值作为新的质心。
    • μ i = 1 ∣ C i ∣ ∑ x ∈ C i x \mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x μi=Ci1xCix

3.3. 重复步骤2和步骤3:

  • 迭代分配数据点并更新质心,直到质心不再变化或者变化非常小(通常有设定的最大迭代次数或者误差容忍度)

4. 关键参数

  • K值(簇数量):需预先指定,可通过肘部法则(Elbow Method)或轮廓系数(Silhouette Score)选择。

  • 初始化方法:

    • 随机初始化(可能陷入局部最优)。

    • K-Means++(优化初始质心选择,默认方法)。

  • 距离度量:通常用欧氏距离,也可用曼哈顿距离等。

5. 优缺点

  • ✅ 优点:

    • 简单高效:时间复杂度 O ( n ⋅ K ⋅ d ⋅ t ) O(n⋅K⋅d⋅t) O(nKdt),其中 n n n 是样本数, d d d 是特征维度, t t t是迭代次数。

    • 可扩展性强:适合大规模数据。

    • 解释性强:簇中心可直接表示簇特征。

  • ❌ 缺点:

    • 需预先指定K值。

    • 对初始质心敏感(可能收敛到局部最优)。

    • 仅适用于凸形簇(对非球形簇效果差)。

    • 对噪声和异常值敏感。

6. 改进变种

  • K-Means++:优化初始质心选择,减少局部最优风险。

  • Mini-Batch K-Means:用数据子集加速计算,适合大数据。

  • K-Medoids(PAM):用实际样本点(而非均值)作为中心,对噪声更鲁棒。

  • Fuzzy C-Means:允许样本属于多个簇(软聚类)。

7. K值选择方法

  • 肘部法则(Elbow Method):

    • 绘制不同K值对应的SSE曲线,选择拐点(SSE下降变缓处)
from sklearn.cluster import KMeans
import matplotlib.pyplot as pltsse = []
for k in range(1, 10):kmeans = KMeans(n_clusters=k).fit(X)sse.append(kmeans.inertia_)
plt.plot(range(1, 10), sse, marker='o')
plt.xlabel('K')
plt.ylabel('SSE')
plt.show()
  • 轮廓系数(Silhouette Score):

    • 衡量样本与同簇和其他簇的相似度,值越接近1表示聚类越好。
from sklearn.metrics import silhouette_score
scores = []
for k in range(2, 10):kmeans = KMeans(n_clusters=k).fit(X)scores.append(silhouette_score(X, kmeans.labels_))
plt.plot(range(2, 10), scores, marker='o')

8. Python示例

from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
import matplotlib.pyplot as plt# 生成模拟数据
X, _ = make_blobs(n_samples=300, centers=4, random_state=42)# 训练K-Means(K=4)
kmeans = KMeans(n_clusters=4, init='k-means++', random_state=42)
kmeans.fit(X)
labels = kmeans.labels_
centers = kmeans.cluster_centers_# 可视化
plt.scatter(X[:, 0], X[:, 1], c=labels, cmap='viridis')
plt.scatter(centers[:, 0], centers[:, 1], c='red', marker='X', s=200)
plt.title("K-Means Clustering")
plt.show()

9. 应用场景

  • 客户分群(如电商用户细分)。

  • 图像压缩(用簇中心代表颜色)。

  • 异常检测(远离簇中心的样本可能是异常值)。

  • 文本聚类(如新闻主题分类)。

10. 注意事项

  • 数据标准化:K均值对特征尺度敏感,需标准化(如StandardScaler)。

  • 处理异常值:可用K-Medoids或DBSCAN替代。

  • 非凸簇问题:尝试谱聚类或高斯混合模型(GMM)。

11. 数学推导(质心更新)

质心 μ i μ_i μi的更新是损失函数
J J J 的最小化过程:
∂ J ∂ μ i = − 2 ∑ x ∈ C i ( x − μ i ) = 0 ⟹ μ i = 1 ∣ C i ∣ ∑ x ∈ C i x \frac{\partial J}{\partial \mu_i} = -2 \sum_{x \in C_i} (x - \mu_i) = 0 \implies \mu_i = \frac{1}{|C_i|} \sum_{x \in C_i} x μiJ=2xCi(xμi)=0μi=Ci1xCix

12. 总结

K均值是聚类任务的基础算法,核心在于迭代优化质心位置。尽管有局限性(如需预设K值),但其高效性和易实现性使其在实践中广泛应用。改进方法(如K-Means++)和评估技巧(肘部法则)可进一步提升效果。

http://www.xdnf.cn/news/1651.html

相关文章:

  • 【python】一文掌握 markitdown 库的操作(用于将文件和办公文档转换为Markdown的Python工具)
  • .NET代码保护混淆和软件许可系统——Eziriz .NET Reactor 7
  • Postgresql源码(143)统计信息基础知识(带实例)
  • Zynq7020 制作boot.bin及烧录到开发板全流程解析
  • 【AI平台】n8n入门1:详细介绍n8n的多种安装方式(含docer图形化安装n8n)
  • sass 变量
  • spark-streaming(二)
  • Python 爬虫实战 | 企名科技
  • 基于Pytorch的深度学习-第二章
  • 《仙剑奇侠传二》游戏秘籍
  • 01.02、判定是否互为字符重排
  • SpringCloud——负载均衡
  • 自动化标注软件解析
  • 颠覆传统NAS体验:耘想WinNAS让远程存储如同本地般便捷
  • 【leetcode100】组合总和Ⅳ
  • 【踩坑记录】stm32 jlink程序烧录不进去
  • 《Learning Langchain》阅读笔记7-RAG(3)生成embeddings
  • react 子组件暴露,父组件接收
  • Qt 入门 6 之布局管理
  • TinyVue v3.22.0 正式发布:深色模式上线!集成 UnoCSS 图标库!TypeScript 类型支持全面升级!
  • 架构-项目管理
  • 半导体---检测和量测
  • Shader 空间变换(七)
  • 深度学习3.7 softmax回归的简洁实现
  • Java面试:从Spring Boot到微服务的全面考核
  • sysstat介绍以及交叉编译
  • 【Redis】 Redis中常见的数据类型(二)
  • 如何解决PyQt从主窗口打开新窗口时出现闪退的问题
  • 逐步了解蓝牙 LE 配对(物联网网络安全)
  • 2024ICPC网络赛第一场题解