当前位置: 首页 > ds >正文

Matrix Theory study notes[5]

文章目录

  • linear space
  • references

linear space

  1. the dimension of a linear space is maximal number of vectors among all vetor groups of linearly indepedent in the linear space.
  2. let n is the dimension of A which is a linear space and A is {3a,4b,6a−5∣aandbarecoprime,aandbareintegers}\{3a,4b,6a-5|a\quad and\quad b\quad are \quad coprime,a \quad and \quad b \quad are \quad integers\}{3a,4b,6a5∣aandbarecoprime,aandbareintegers},the nnn is 2 because that the maximal numbers of vectors such as {3a,4b}\{3a,4b\}{3a,4b},{4b,6a−5}\{4b,6a-5\}{4b,6a5} are two,dim A=2.
  3. the linear space A with n dimension is called as n dimension linear space AnA^nAn in the number field,if n=+∞n=+\inftyn=+,then A is called as unlimited dimension linear space.
  4. a basis of linear space meets following conditions.
  • let V is a linear space in the number field K and v1,v2,v3,...,vr∈Vv_1,v_2,v_3,...,v_r \in Vv1,v2,v3,...,vrV,VVV satsifies two situations.

    • v1,v2,v3,...,vrv_1,v_2,v_3,... ,v_rv1,v2,v3,...,vr are linear independent.
    • each vector of V is the linear combination of v1,v2,v3,...,vrv_1,v_2,v_3,... ,v_rv1,v2,v3,...,vr.

    the v1,v2,v3,...,vrv_1,v_2,v_3,... ,v_rv1,v2,v3,...,vrcan be called as the basis of linear space VVV,viv_ivi is basic vector.

  • the basis of a linear space is not one and only.

  1. dimension of a linear space is the number of vectors that the basis of the linear space includes.
  2. the vectors which be included in fundamental resolution set of homogeneous linear equations system Ax=0Ax=0Ax=0 is a basis of solution space.
  • homogeneous linear equations system,all the constant terms of it are zero,can be formed as follows.

{a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0⋮am1x1+am2x2+⋯+amnxn=0\begin{cases} a_{11}x_1 + a_{12}x_2 + \cdots + a_{1n}x_n = 0 \\ a_{21}x_1 + a_{22}x_2 + \cdots + a_{2n}x_n = 0 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 + \cdots + a_{mn}x_n = 0 \end{cases} a11x1+a12x2++a1nxn=0a21x1+a22x2++a2nxn=0am1x1+am2x2++amnxn=0
the aija_{ij}aijis are coefficient,xjx_jxj are unkown number,the right items of all equations are zero.

  • the zero solution exists necessarily, x1=x2=⋯=xn=0x_1 = x_2 = \cdots = x_n = 0x1=x2==xn=0 , to be called as trivial solution.
  • the non-zero solution exists.
    • if the rank rrr of a equations system’s coefficient matrix is less than the number of unkown number nnn ,r<nr<nr<n,then there are infinited number of non-zero solutions exists in the equations system,also is called as non-trivial solution.
    • all solutions make up a vector space,can be called as solution space, which dimension is n−rn-rnr.
    • if the equations system has non-zero solution,then the basis of solution space can be called as fundamental system of solutions.the general solution can be expressed as a linear combination of fundamental system of solution set .
    • when r=nr = nr=n,the equations system have only zero solution.
  • the following example explain that how to get solution of homogeneous linear equations system.

{x1+2x2−x3=02x1−x2+x3=0\begin{cases} x_1 + 2x_2 - x_3 = 0 \\ 2x_1 - x_2 + x_3 = 0 \end{cases} {x1+2x2x3=02x1x2+x3=0
A=(12−12−11)A = \begin{pmatrix} 1 & 2 & -1 \\ 2 & -1 & 1 \end{pmatrix} A=(122111)
(12−10−53)\begin{pmatrix} 1 & 2 & -1 \\ 0 & -5 & 3 \end{pmatrix} (102513)
(101501−35)\begin{pmatrix} 1 & 0 & \frac{1}{5} \\ 0 & 1 & -\frac{3}{5} \end{pmatrix} (10015153)
the rank r=2r = 2r=2,the number of unkown numbern=3n = 3n=3r<nr < nr<n,the non-zero solution exists.
the free variable is x3x_3x3,let x3=5x_3 = 5x3=5
ξ=(−135)\mathbf{\xi} = \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} ξ=135
finally,the general solution has computed.
k(−135)(k∈R)k \begin{pmatrix} -1 \\ 3 \\ 5 \end{pmatrix} \quad(k \in \mathbb{R}) k135(kR)

references

  1. deepseek
  2. 《矩阵论》
http://www.xdnf.cn/news/16490.html

相关文章:

  • ​​XSLT:XML转换的“魔法棒”​
  • 用Java实现rpc的逻辑和流程图和核心技术与难点分析
  • Python day25
  • 什么是JUC
  • 基于tk界面库的扩展类
  • Go by Example
  • 深入解析命名管道:原理、实现与进程间通信应用
  • 深入React框架:构建现代前端应用的全面指南
  • Vue当中背景图无法占满屏幕的解决方法
  • 使用FRP搭建内网穿透工具,自己公网服务器独享内外网端口转发
  • Ubuntu 22.04 配置 Zsh + Oh My Zsh + Powerlevel10k
  • 物联网统一网关:多协议转换与数据处理架构设计
  • HiggsAudio-V2: 融合语言与声音的下一代音频大模型
  • 【企业架构】TOGAF概念之二
  • 数据结构(4)单链表算法题(上)
  • Linux库——库的制作和原理(2)_库的原理
  • c#抽象类和接口的异同
  • 八股文整理——计算机网络
  • Docker常用命令详解:以Nginx为例
  • 台式电脑有多个风扇开机只有部分转动的原因
  • 典型的 Vue 3 项目目录结构详解
  • 解决使用vscode连接服务器出现“正在下载 VS Code 服务器...”
  • 动态SQL标签
  • FROM stakater/java8-alpine 构建cocker镜像
  • 学习嵌入式的第三十三天-数据结构-(2025.7.25)服务器/多客户端模型
  • SSRF_XXE_RCE_反序列化学习
  • ChatIm项目文件上传与获取
  • 前缀和-238-除自身以外数组的乘积-力扣(LeetCode)
  • 《使用Qt Quick从零构建AI螺丝瑕疵检测系统》——6. 传统算法实战:用OpenCV测量螺丝尺寸
  • nginx一个域名下部署多套前端项目