当前位置: 首页 > backend >正文

STM32F103RC的USB上拉电阻1.5K

1.USB标准的连接器引脚分布

在这里插入图片描述

2.USB主机检测设备插入的原理

USB集线器的每个下游端口在D+和D-线上均连接了15kΩ的下拉电阻到地。当集线器的端口悬空没有设备插入时,这两条信号线被下拉至低电平,主机检测到稳定的逻辑低电平,判断端口空闲。
在这里插入图片描述

2.1设备插入时的电平变化

USB设备端在D+或D-线上连接了1.5kΩ的上拉电阻至3.3V电源。上拉电阻的位置取决于设备的速度:
全速/高速设备: 上拉电阻连接至D+线,插入后D+被拉高至逻辑高电平,D-保持低电平。
低速设备: 上拉电阻连接至D-线,插入后D-被拉高至逻辑高电平,D+保持低电平。

2.2主机识别过程

主机通过检测D+或D-线的电平变化判断设备插入及速度:
全速/高速设备: D+高电平(D-低电平)触发全速/高速模式识别。
低速设备: D-高电平(D+低电平)触发低速模式识别。
无设备: D+和D-均为低电平,端口视为空闲状态。

3.STM32的USB通信

根据DP/DM引脚的不同状态工作在主机或设备模式。在设备模式下,只支持高速或全速,不支持低速。OTG模式下,MCU通过VBUS和ID引脚判断角色,ID=0为HOST,DP/DM下拉;ID=1且VBUS有电则为Device,DP自动上拉。STM32内置的DP有上拉电阻,表明不支持低速设备模式。
补充: F1系列肯定不支持内嵌的上下拉,后来新出的系列基本都支持了。OTG模块的DM DP支持软件动态配置上下拉。集成了上拉/下拉电阻,意味着外部不需要上下拉电阻,通过软件功能就可以自动控制了。

4.STM32F103RC的USB电路设计

F1系列MCU电路设计上需要加入上拉电阻1.5k,不然识别不到usb设备。
在这里插入图片描述

http://www.xdnf.cn/news/18391.html

相关文章:

  • 回归测试的重要性与实践指南
  • 52 C++ 现代C++编程艺术1-禁止隐式转换关键字explicit
  • go语言中的select的用法和使用场景
  • Maven初识到应用
  • nginx-如何卸载和升级编译安装的版本
  • 第4课:布局与样式
  • RabbitMQ 应用问题
  • 产教融合助企业:国际数字影像产业园办全媒体人才培育会
  • K8S管理实战指南
  • 如何实现H5页面拉起原生App?
  • 学习:uniapp全栈微信小程序vue3后台(3)
  • SprintBoot 2 源码阅读
  • Thunderbird 将推出在德国托管的加密电子邮件服务
  • 浏览器插件优化工具:bypass paywalls chrome
  • 力扣热题之贪心算法
  • Python 办公自动化实战:Excel 批量处理 + 自动发邮件
  • VsCode 上的Opencv(C++)环境配置(Linux)
  • 51单片机-中断系统
  • Ansys Motor-CAD:概述(EMag、THERM、LAB、MECH)
  • 171-基于Flask的笔记本电脑数据可视化分析系统
  • Linux数字列排序命令
  • Apache Ozone 介绍与部署使用(最新版2.0.0)
  • 大数据毕业设计推荐:基于Hadoop+Spark的手机信息分析系统完整方案
  • Matrix-Zero:昆仑万维发布的AI世界模型,支持单张图生成3D世界
  • 微信小程序,事件总线(Event Bus) 实现
  • 不同类型代理 IP 在爬虫场景下的表现对比
  • 05 ODS层(Operation Data Store)
  • 集成电路学习:什么是Camera Calibration相机标定
  • 【自用】JavaSE--网络通信
  • 电脑芯片其实更偏向MPU不是CPU,GPU CPU NPU MPU MCU的区别