当前位置: 首页 > backend >正文

深度学习笔记29-RNN实现阿尔茨海默病诊断(Pytorch)

  •    🍨 本文为🔗365天深度学习训练营中的学习记录博客
  • 🍖 原作者:K同学啊

  一、前期准备

1.数据导入

import numpy as np
import pandas as pd
import torch
from torch import nn
import torch.nn.functional as F
import seaborn as snsdf = pd.read_csv("alzheimers_disease_data.csv")
# 删除第一列和最后一列
df = df.iloc[:, 1:-1]
df

二、构建数据集

1.标准化

from sklearn.preprocessing import StandardScaler
from sklearn.model_selection import train_test_splitX = df.iloc[:,:-1]
y = df.iloc[:,-1]# 将每一列特征标准化为标准正太分布,注意,标准化是针对每一列而言的
sc = StandardScaler()
X  = sc.fit_transform(X)

2.划分数据集

X = torch.tensor(np.array(X), dtype=torch.float32)
y = torch.tensor(np.array(y), dtype=torch.int64)X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.1, random_state = 1)X_train.shape, y_train.shape

 

3.构建数据加载器

from torch.utils.data import TensorDataset, DataLoadertrain_dl = DataLoader(TensorDataset(X_train, y_train),batch_size=64, shuffle=False)test_dl  = DataLoader(TensorDataset(X_test, y_test),batch_size=64, shuffle=False)

三、模型训练

1.构建模型

class model_rnn(nn.Module):def __init__(self):super(model_rnn, self).__init__()self.rnn0 = nn.RNN(input_size=32, hidden_size=200, num_layers=1, batch_first=True)self.fc0   = nn.Linear(200, 50)self.fc1   = nn.Linear(50, 2)def forward(self, x):out, hidden1 = self.rnn0(x) out    = self.fc0(out) out    = self.fc1(out) return out   model = model_rnn()
model

model(torch.rand(30,32)).shape

2.定义训练函数

# 训练循环
def train(dataloader, model, loss_fn, optimizer):size = len(dataloader.dataset)  # 训练集的大小num_batches = len(dataloader)   # 批次数目, (size/batch_size,向上取整)train_loss, train_acc = 0, 0  # 初始化训练损失和正确率for X, y in dataloader:  # 获取图片及其标签X, y = X.to(device), y.to(device)# 计算预测误差pred = model(X)          # 网络输出loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失# 反向传播optimizer.zero_grad()  # grad属性归零loss.backward()        # 反向传播optimizer.step()       # 每一步自动更新# 记录acc与losstrain_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()train_loss += loss.item()train_acc  /= sizetrain_loss /= num_batchesreturn train_acc, train_loss

3.定义测试函数

def test (dataloader, model, loss_fn):size        = len(dataloader.dataset)  # 测试集的大小num_batches = len(dataloader)          # 批次数目, (size/batch_size,向上取整)test_loss, test_acc = 0, 0# 当不进行训练时,停止梯度更新,节省计算内存消耗with torch.no_grad():for imgs, target in dataloader:imgs, target = imgs.to(device), target.to(device)# 计算losstarget_pred = model(imgs)loss        = loss_fn(target_pred, target)test_loss += loss.item()test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()test_acc  /= sizetest_loss /= num_batchesreturn test_acc, test_loss

4.训练模型

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 5e-5   # 学习率
opt        = torch.optim.Adam(model.parameters(),lr=learn_rate)
epochs     = 50train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []for epoch in range(epochs):model.train()epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)model.eval()epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前的学习率lr = opt.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%, Test_loss:{:.3f}, Lr:{:.2E}')print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss, lr))print("="*20, 'Done', "="*20)

四、模型评估

1.Loss与Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 200        #分辨率from datetime import datetime
current_time = datetime.now() # 获取当前时间epochs_range = range(epochs)plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')
plt.xlabel(current_time) # 打卡请带上时间戳,否则代码截图无效plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

2.混淆矩阵

print("==============输入数据Shape为==============")
print("X_test.shape:",X_test.shape)
print("y_test.shape:",y_test.shape)pred = model(X_test.to(device)).argmax(1).cpu().numpy()print("\n==============输出数据Shape为==============")
print("pred.shape:",pred.shape)

 

import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import confusion_matrix, ConfusionMatrixDisplay# 计算混淆矩阵
cm = confusion_matrix(y_test, pred)plt.figure(figsize=(6,5))
plt.suptitle('')
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues")# 修改字体大小
plt.xticks(fontsize=10)
plt.yticks(fontsize=10)
plt.title("Confusion Matrix", fontsize=12)
plt.xlabel("Predicted Label", fontsize=10)
plt.ylabel("True Label", fontsize=10)# 显示图
plt.tight_layout()  # 调整布局防止重叠
plt.show()

 

3.调用模型进行预测

test_X = X_test[0].reshape(1, -1) # X_test[0]即我们的输入数据pred = model(test_X.to(device)).argmax(1).item()
print("模型预测结果为:",pred)
print("=="*20)
print("0:未患病")
print("1:已患病")

四、总结

阿尔茨海默病的诊断难点在于早期识别和病程追踪,RNN恰好擅长处理这类时序数据。RNN 能够学习这些不同模态特征在时间维度上的相互作用及其共同演变对疾病状态的影响。

然基础 RNN 处理缺失数据有挑战,但可以结合以下技术使其更鲁棒:

  • 序列填充与掩码: 处理不同长度序列。

  • 插值技术: 估算缺失时间点的值(要谨慎)。

  • 注意力机制: 让模型学会关注更可靠或信息更丰富的时间点和模态,降低对缺失数据的敏感性。

  • 图神经网络结合: 将时间点视为图节点,利用图结构处理不规则时序和缺失。

http://www.xdnf.cn/news/14869.html

相关文章:

  • 因果语言模型、自回归语言模型、仅解码器语言模型都是同一类模型
  • VS CodeC51 单片机开发环境搭建
  • Django+DRF 实战:从异常捕获到自定义错误信息
  • 从入门到精通:数据库全攻略
  • Jenkins-Publish HTML reports插件
  • 技术与情感交织的一生 (九)
  • Python 的内置函数 reversed
  • WPS中配置MathType教程
  • 数学中微分与导数的理解和区别
  • Linux基本命令篇 —— uname命令
  • 本地部署Dify并结合ollama大语言模型工具搭建自己的AI知识库
  • 垂起固定翼无人机介绍
  • 二叉树题解——将有序数组转换为二叉搜索树【LeetCode】传统解法
  • Compose 高级用法详解——AI教你学Docker
  • 焊接机器人结构设计cad【16张】三维图+设计说明书+绛重
  • SQL 快速参考手册-SQL001
  • 思辨场域丨数字信号技术重塑农林牧渔:从“靠天吃饭”到“靠数吃饭”
  • 【V13.0 - 战略篇】从“完播率”到“价值网络”:训练能预测商业潜力的AI矩阵
  • Rust Web 全栈开发(二):构建 HTTP Server
  • 《导引系统原理》-西北工业大学-周军-“2️⃣导引头的角度稳定系统”
  • 计算机科学导论(10)什么是BIOS
  • 伞兵 钓鱼的肝
  • 好用的自带AI功能的国产IDE
  • Linux 自旋锁的实现
  • 基于SpringBoot+Vue的酒类仓储管理系统
  • Java 核心技术与框架实战十八问
  • 从0开始学习R语言--Day37--CMH检验
  • 如何将信息从 iPhone 同步到Mac(完整步骤和示意图)
  • Mac电脑 触摸板增强工具 BetterTouchTool
  • NumPy 安装使用教程