当前位置: 首页 > backend >正文

OpenCV种的cv::Mat与Qt种的QImage类型相互转换

一、首先了解cv::Mat结构体

cv::Mat::step与QImage转换有着较大的关系。

step的几个类别区分:

  • step:矩阵第一行元素的字节数
  • step[0]:矩阵第一行元素的字节数
  • step[1]:矩阵中一个元素的字节数
  • step1(0):矩阵中一行有几个通道数
  • step1(1):一个元素有几个通道数(channel())
    cv::Mat cvmat(3, 4, CV_16UC4, cv::Scalar_<uchar>(1, 2, 3, 4));std::cout << cvmat<< std::endl;std::cout << "step:" << cvmat.step << std::endl;std::cout << "step[0]:" << cvmat.step[0] << std::endl;std::cout << "step[1]:" << cvmat.step[1] << std::endl;std::cout << "step1(0):" << cvmat.step1(0) << std::endl;std::cout << "step1(1):" << cvmat.step1(1) << std::endl;

运行结果:

分析:
创建了一个3∗4的16位4通道的矩阵;

每一个元素赋值为1,2,3,4;可以看到生成了3*4*4的矩阵;

因为创建的是16位的,所以每一个通道是2个字节数;

所以一行共有4*4*2=32个字节数,故step和step[0]都为32;

因为一个元素有4个通道,每个通道2个字节,所以1个元素的字节数step[1]为4*2=8;

一行是4个元素,每个元素是4个通道,所以一行的通道数,step1(0)为4*4=16,step1(1)为4;

二、cv::Mat转QImage

代码示例为拷贝转换:

QImage cvMat2QImage(const cv::Mat& mat) 
{if (mat.empty()){return QImage();}QImage image;switch (mat.type()){case CV_8UC1:{image = QImage((const uchar*)(mat.data),mat.cols, mat.rows, mat.step,QImage::Format_Grayscale8);return image.copy();}case CV_8UC2:{mat.convertTo(mat, CV_8UC1);image = QImage((const uchar*)(mat.data),mat.cols, mat.rows, mat.step,QImage::Format_Grayscale8);return image.copy();}case CV_8UC3:{// Copy input Matconst uchar *pSrc = (const uchar*)mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_8UC4:{// Copy input Matconst uchar *pSrc = (const uchar*)mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_ARGB32);return image.copy();}case CV_32FC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_32FC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX,-1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_64FC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_64FC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_32SC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_32SC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_16SC1:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;QImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_16SC3:{Mat normalize_mat;normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);normalize_mat.convertTo(normalize_mat, CV_8U);const uchar *pSrc = (const uchar*)normalize_mat.data;// Create QImage with same dimensions as input MatQImage image(pSrc, normalize_mat.cols, normalize_mat.rows, normalize_mat.step, QImage::Format_RGB888);return image.rgbSwapped();}case CV_8SC1:{//Mat normalize_mat;//normalize(mat, normalize_mat, 0, 255, NORM_MINMAX, -1);mat.convertTo(mat, CV_8U);const uchar *pSrc = (const uchar*)mat.data;QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_Grayscale8);return image.copy();}case CV_8SC3:{mat.convertTo(mat, CV_8U);const uchar *pSrc = (const uchar*)mat.data;QImage image(pSrc, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();}default:mat.convertTo(mat, CV_8UC3);QImage image((const uchar*)mat.data, mat.cols, mat.rows, mat.step, QImage::Format_RGB888);return image.rgbSwapped();return QImage();break;}
}

三、QImage转cv::Mat

示例代码为共享内存转换:

cv::Mat QImage2cvMat(QImage& image)
{cv::Mat mat;//qDebug() << image.format();switch (image.format()){case QImage::Format_ARGB32:mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_RGB32:mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());//cv::cvtColor(mat, mat, CV_BGR2RGB);break;case QImage::Format_ARGB32_Premultiplied:mat = cv::Mat(image.height(), image.width(), CV_8UC4, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_RGB888:mat = cv::Mat(image.height(), image.width(), CV_8UC3, (void*)image.constBits(), image.bytesPerLine());//cv::cvtColor(mat, mat, CV_BGR2RGB);break;case QImage::Format_Indexed8:mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());break;case QImage::Format_Grayscale8:mat = cv::Mat(image.height(), image.width(), CV_8UC1, (void*)image.constBits(), image.bytesPerLine());break;}return mat;
}

http://www.xdnf.cn/news/12209.html

相关文章:

  • ES 学习总结一 基础内容
  • mac 电脑Pycharm ImportError: No module named pip
  • io多路复用的三种方式
  • Haproxy的基础配置
  • vue+element-ui一个页面有多个子组件组成。子组件里面有各种表单,实现点击enter实现跳转到下一个表单元素的功能。
  • 在 Oracle 中,创建不同类型索引的 SQL 语法
  • 一次Oracle的非正常关闭
  • java学习笔记——数组和二维数组
  • 驶向智能未来:车载 MCP 服务与边缘计算驱动的驾驶数据交互新体验
  • AI学习笔记二十九:YOLOV12部署测试
  • Golang——8、协程和管道
  • 更新Java的环境变量后VScode/cursor里面还是之前的环境变量
  • 【Go语言基础【5】】运算符基础
  • Kubernetes (k8s)版本发布情况
  • Java 依赖注入、控制反转与面向切面:面试深度解析
  • Deployment实现扩展/收缩,以及滚动更新
  • 数据结构第八章(二)-交换排序
  • dvwa14——JavaScript
  • 多层PCB技术解析:从材料选型到制造工艺的深度实践
  • Python 训练营打卡 Day 44
  • Linux下JSON序列化与反序列化方法
  • Python Day44
  • 数据可视化大屏案例落地实战指南:捷码平台7天交付方法论
  • 【达梦数据库】OOM问题排查思路
  • React 新项目
  • OGG-01635 OGG-15149 centos服务器远程抽取AIX oracle11.2.0.4版本
  • Spring框架学习day7--SpringWeb学习(概念与搭建配置)
  • Eureka REST 相关接口
  • 云原生思维重塑数字化基座:从理念到实践的深度剖析
  • Python基于蒙特卡罗方法实现投资组合风险管理的VaR与ES模型项目实战