当前位置: 首页 > backend >正文

C语言数据结构笔记3:Union联合体+结构体取8位Bool量

本文衔接上文要求,新增8位bool量的获取方式。

目录

问题提出:

Union联合体+struct结构体(方式1):

Union联合体+struct结构体(方式2):

BYTE方式读取:


问题提出:

在STM32单片机的编程中,无法定义Bool或者bit类型

但有时候,比如modbus通信时,需要把bool量八个八个地组合读取,少于8个的部分填充0

Union联合体+struct结构体(方式1):

这里是考虑到超过8位的使用场景,因此定义了超过3字节的定义方式

这种方式适合那种喜欢一个一个列出所有寄存器位名称的情况。


#define BITS_PER_BYTE 8
#define BYTES_FOR_BITS 3  //// 定义3字节的位字段结构
typedef union {uint8_t bytes[BYTES_FOR_BITS];  // 整个字节数组访问struct {// 每个字节单独定义位字段struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} byte0;struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} byte1;struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} byte2;} bits;
} LargeBitField;
#include <stdio.h>typedef unsigned char uint8_t;
typedef unsigned short int    uint16_t;
typedef signed short int      int16_t;#pragma pack(push, 1) //:将结构体的对齐方式设置为 1 字节,并将当前对齐设置保存到堆栈中。//0x03e8 - 0x03ee
typedef struct  ABC_regs1
{uint16_t  A1;uint16_t  B1;int16_t   C1;int16_t   D1;uint16_t  E1;int16_t   F1;int16_t   G1;
}ABC_regs_1;//0x177B - 0x1781
typedef struct  ABC_regs2
{uint16_t  A2;uint16_t  B2;int16_t   C2;int16_t   D2;uint16_t  E2;int16_t   F2;int16_t   G2;
}ABC_regs_2;#define BITS_PER_BYTE 8
#define BYTES_FOR_BITS 3  //// 定义15字节的位字段结构
typedef union {uint8_t bytes[BYTES_FOR_BITS];  // 整个字节数组访问struct {// 每个字节单独定义位字段struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} byte0;struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} byte1;struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} byte2;} bits;
} LargeBitField;typedef struct  Letter_regs
{ABC_regs_1 ABC1;  //0x03e8 - 0x03f1 //7成员 14字节 //偏移量 0x00- 0x0cABC_regs_2 ABC2;  //0x177B - 0x1781 //7成员 14字节 //BOOL_1     Bool1; //LargeBitField Bytes;
}letter_regs;int main(void)
{letter_regs reg;// 设置位reg.Bytes.bits.byte0.b0 = 1;  // 设置byte0的第0位为1reg.Bytes.bits.byte1.b7 = 1;  // 设置byte1的第7位为1// 读取位uint8_t bit0 = reg.Bytes.bits.byte0.b0;uint8_t bit7 = reg.Bytes.bits.byte1.b7;printf("Bit 0 of byte0: %d\n", bit0);printf("Bit 7 of byte1: %d\n", bit7);// 通过字节数组访问reg.Bytes.bytes[0] = 0x0F;  // 设置byte0为0x0Fprintf("Byte 0: 0x%02X\n", reg.Bytes.bytes[0]);}

Union联合体+struct结构体(方式2):

这种方式不一个一个列出寄存器名称,直接通过地址偏移操作:

#include <stdio.h>typedef unsigned char uint8_t;
typedef unsigned short int    uint16_t;
typedef signed short int      int16_t;#pragma pack(push, 1) //:将结构体的对齐方式设置为 1 字节,并将当前对齐设置保存到堆栈中。//0x03e8 - 0x03ee
typedef struct  ABC_regs1
{uint16_t  A1;uint16_t  B1;int16_t   C1;int16_t   D1;uint16_t  E1;int16_t   F1;int16_t   G1;
}ABC_regs_1;//0x177B - 0x1781
typedef struct  ABC_regs2
{uint16_t  A2;uint16_t  B2;int16_t   C2;int16_t   D2;uint16_t  E2;int16_t   F2;int16_t   G2;
}ABC_regs_2;// 定义字节的位字段结构
typedef union {uint8_t byte;  // 整个字节数组访问struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} bits;
}BitField;typedef struct  Letter_regs
{ABC_regs_1 ABC1;  //0x03e8 - 0x03f1 //7成员 14字节 //偏移量 0x00- 0x0cABC_regs_2 ABC2;  //0x177B - 0x1781 //7成员 14字节 BitField Bytes[10];
}letter_regs;int main(void)
{letter_regs reg;// 通过直接赋值给联合体的字节reg.Bytes[0].byte = 0xA5;  // 0xA5 in hex is 10100101 in binary// 通过位域赋值reg.Bytes[1].bits.b0 = 1;  // Set bit 0 to 1reg.Bytes[1].bits.b7 = 1;  // Set bit 7 to 1// 读取并打印结果printf("Byte 0: 0x%02X\n", reg.Bytes[0].byte);  // 输出 0xA5printf("Byte 1: 0x%02X\n", reg.Bytes[1].byte);  // 输出 0x81 (因为 b7 和 b0 被设置为1)}

BYTE方式读取:

#include <stdio.h>typedef unsigned char uint8_t;
typedef unsigned short int    uint16_t;
typedef signed short int      int16_t;
#pragma pack(push, 1) //:将结构体的对齐方式设置为 1 字节,并将当前对齐设置保存到堆栈中。//0x03e8 - 0x03ee
typedef struct  ABC_regs1
{uint16_t  A1;uint16_t  B1;int16_t   C1;int16_t   D1;uint16_t  E1;int16_t   F1;int16_t   G1;
}ABC_regs_1;//0x177B - 0x1781
typedef struct  ABC_regs2
{uint16_t  A2;uint16_t  B2;int16_t   C2;int16_t   D2;uint16_t  E2;int16_t   F2;int16_t   G2;
}ABC_regs_2;// 定义字节的位字段结构
typedef union {uint8_t byte;  // 整个字节数组访问struct {uint8_t b0 : 1;uint8_t b1 : 1;uint8_t b2 : 1;uint8_t b3 : 1;uint8_t b4 : 1;uint8_t b5 : 1;uint8_t b6 : 1;uint8_t b7 : 1;} bits;
}BitField;typedef struct  Letter_regs
{ABC_regs_1 ABC1;  //0x03e8 - 0x03f1 //7成员 14字节ABC_regs_2 ABC2;  //0x177B - 0x1781 //7成员 14字节 BitField Bytes[10]; //0x0400 - 0x0450 //80 成员 
}letter_regs;int main(void)
{letter_regs reg;// 通过直接赋值给联合体的字节reg.Bytes[0].byte = 0xAA;  // 0xA5 in hex is 10100101 in binaryreg.Bytes[8].byte = 0x6A;  // 0xA5 in hex is 10100101 in binaryunsigned char* ptr = (unsigned char*)&reg.Bytes;//print_struct_values(&reg);//联合体读8个,实际物理地址才偏移1,相对于基地址地偏移量,都一个BYTE才偏移1for (int j = 0; j < 10; j++) //读10个BYTE 整个联合体{unsigned char offset = j; // 计算偏移量uint8_t value = *(const uint8_t*)(ptr + offset);printf("Byte %d: 0x%02X\n",j,value);}
}

http://www.xdnf.cn/news/11957.html

相关文章:

  • 109页PPT华为流程模块L1-L4级梳理及研发采购服务资产5级建模
  • 如何通过RL真正提升大模型的推理能力?NVIDIA提出长期强化学习训练框架ProRL
  • Learning a Discriminative Prior for Blind Image Deblurring论文阅读
  • nest实现前端图形校验
  • Linux磁盘管理 - RAID
  • macOS 上使用 Homebrew 安装redis-cli
  • 我们来学zookeeper -- 集群搭建
  • Monorepo架构: 项目管理模式对比与考量
  • 详解ZYNQ中的 RC 和 EP
  • 解决idea编译运行项目时间长的问题
  • 深入理解C#中的Web API:构建现代化HTTP服务的完整指南
  • Redis 集群批量删除key报错 CROSSSLOT Keys in request don‘t hash to the same slot
  • leetcode删除排序链表中的重复元素-小白初学简单解说
  • JavaScript 深入探索:高级应用与前沿技术
  • 佰力博科技与您探讨半导体电阻测试的基本原理
  • 数据分析之OLTP vs OLAP
  • 乘用车自动驾驶和非乘用车(矿车,卡车)自动驾驶区别
  • 机器学习基础(三) 逻辑回归
  • vue3+elementplus表格表头加图标及文字提示
  • SpringBoot-15-多表查询之多对多查询可选中间表
  • 经典ReLU回归!重大缺陷「死亡ReLU问题」已被解决
  • SAP学习笔记 - 开发22 - 前端Fiori开发 数据绑定(Jason),Data Types(数据类型)
  • Doris查询Hive数据:实现高效跨数据源分析的实践指南
  • 机器翻译模型笔记
  • go语言的锁
  • React与原生事件:核心差异与性能对比解析
  • Java时间API终极指南
  • C++11 中 auto 和 decltype 的深入解析
  • DeepSeek本地部署及WebUI可视化教程
  • 豆瓣图书评论数据分析与可视化