当前位置: 首页 > ai >正文

回溯算法:解锁多种问题的解决之门

经典回溯算法

回溯算法是一种基于深度优先搜索的算法,通过探索所有可能的候选解来找出所有可能的解。当候选解不满足条件时,会回溯到上一步,尝试其他的候选解。下面将介绍回溯算法在组合问题、切割问题、排列问题、子集问题、棋盘问题和图的遍历等方面的应用。

组合问题

如从 N 个数中选出 k 个数的所有组合方式。以从数组 [1,2,3,4] 中选 2 个数为例,其核心思想是通过回溯的方式尝试所有可能的组合。具体步骤如下:

  • 初始化 :定义结果集和路径变量,结果集用于存储所有满足条件的组合,路径变量用于存储当前递归路径上的元素。
  • 递归函数 :参数包括起始位置 startindex、目标个数 k、数组等。终止条件是路径的长度等于 k 时,将路径添加到结果集中。在循环中,从 startindex 开始遍历数组,依次将元素添加到路径中,并递归调用函数,起始位置加 1,继续选择下一个元素。回溯时移除路径中的最后一个元素。
  • 代码演示
func combine(n int, k int) [][]int {result := [][]int{}path := []int{}var backtrack func(startIndex int)backtrack = func(startIndex int) {if len(path) == k {temp := make([]int, k)copy(temp, path)result = append(result, temp)return}for i := startIndex; i <= n; i++ {path = append(path, i)backtrack(i + 1)path = path[:len(path)-1]}}backtrack(1)return result
}

切割问题

一个字符串按一定规则有几种切割方式。例如将字符串 “aab” 切割成所有可能的子字符串组合。其核心思想是通过回溯的方式尝试所有可能的切割位置。具体步骤如下:

  • 初始化 :定义结果集和路径变量。
  • 递归函数 :参数包括起始位置 startindex、字符串等。终止条件是起始位置等于字符串长度时,将路径添加到结果集中。在循环中,从 startindex 开始遍历字符串,依次切割子字符串,判断是否符合要求,如果符合,就将其添加到路径中,并递归调用函数,起始位置更新为 i+1。回溯时移除路径中的最后一个元素。
  • 代码演示
func partition(s string) [][]string {result := [][]string{}path := []string{}var backtrack func(startIndex int)backtrack = func(startIndex int) {if startIndex >= len(s) {temp := make([]string, len(path))copy(temp, path)result = append(result, temp)return}for i := startIndex; i < len(s); i++ {if isPalindrome(s[startIndex : i+1]) {path = append(path, s[startIndex:i+1])backtrack(i + 1)path = path[:len(path)-1]}}}backtrack(0)return result
}
func isPalindrome(s string) bool {for i := 0; i < len(s)/2; i++ {if s[i] != s[len(s)-1-i] {return false}}return true
}

排列问题

如 N 个数的所有排列方式。以数组 [1,2,3] 的全排列为例。其核心思想是通过回溯的方式尝试所有可能的排列。具体步骤如下:

  • 初始化 :定义结果集和路径变量,同时定义一个 used 数组来记录元素是否被使用。
  • 递归函数 :参数包括 used 数组等。终止条件是路径的长度等于数组长度时,将路径添加到结果集中。在循环中,依次选择未使用的元素,将其添加到路径中,并标记为已使用,递归调用函数。回溯时移除路径中的最后一个元素,并标记为未使用。
  • 代码演示
func permute(nums []int) [][]int {result := [][]int{}path := []int{}used := make([]bool, len(nums))var backtrack func()backtrack = func() {if len(path) == len(nums) {temp := make([]int, len(path))copy(temp, path)result = append(result, temp)return}for i := 0; i < len(nums); i++ {if !used[i] {used[i] = truepath = append(path, nums[i])backtrack()path = path[:len(path)-1]used[i] = false}}}backtrack()return result
}

子集问题

如从 N 个数中选出所有符合条件的子集。以数组 [1,2,3] 的所有子集为例。其核心思想是通过回溯的方式尝试所有可能的子集。具体步骤如下:

  • 初始化 :定义结果集和路径变量。
  • 递归函数 :参数包括起始位置 startindex、数组等。终止条件是当起始位置大于等于数组长度时结束。在循环中,从 startindex 开始遍历数组,依次将元素添加到路径中,并添加到结果集中,然后递归调用函数,起始位置加 1,继续向下搜索。回溯时移除路径中的最后一个元素。
  • 代码演示
func subsets(nums []int) [][]int {result := [][]int{}path := []int{}var backtrack func(startIndex int)backtrack = func(startIndex int) {temp := make([]int, len(path))copy(temp, path)result = append(result, temp)for i := startIndex; i < len(nums); i++ {path = append(path, nums[i])backtrack(i + 1)path = path[:len(path)-1]}}backtrack(0)return result
}

棋盘问题

经典的八皇后问题是回溯算法在棋盘问题中的典型应用。其核心思想是通过回溯的方式尝试在棋盘上放置皇后。具体步骤如下:

  • 初始化 :定义棋盘和结果集。
  • 递归函数 :参数包括行号 row 等。终止条件是当行号等于棋盘大小时,将当前棋盘状态添加到结果集中。在循环中,依次尝试在当前行的每一列放置皇后,判断是否满足条件,如果满足,就在此位置放置皇后,并递归调用函数,行号加 1。回溯时撤销皇后的位置。
  • 代码演示
func solveNQueens(n int) [][]string {result := [][]string{}board := make([][]string, n)for i := range board {board[i] = make([]string, n)for j := range board[i] {board[i][j] = "."}}var backtrack func(row int)backtrack = func(row int) {if row == n {temp := make([]string, n)for i := range board {temp[i] = strings.Join(board[i], "")}result = append(result, temp)return}for col := 0; col < n; col++ {if isValid(board, row, col) {board[row][col] = "Q"backtrack(row + 1)board[row][col] = "."}}}backtrack(0)return result
}
func isValid(board [][]string, row, col int) bool {for i := 0; i < row; i++ {if board[i][col] == "Q" {return false}}for i, j := row-1, col-1; i >= 0 && j >= 0; i, j = i-1, j-1 {if board[i][j] == "Q" {return false}}for i, j := row-1, col+1; i >= 0 && j < len(board); i, j = i-1, j+1 {if board[i][j] == "Q" {return false}}return true
}

图的遍历

深度优先搜索(DFS)是回溯算法在图的遍历中的典型应用。其核心思想是通过回溯的方式深度优先地遍历图。具体步骤如下:

  • 初始化 :定义访问标记数组,用于记录节点是否被访问过。
  • 递归函数 :参数包括当前节点等。终止条件是当所有节点都被访问过时结束。将当前节点标记为已访问,并依次访问其邻接节点,若邻接节点未被访问过,则递归调用函数。回溯时将当前节点标记为未访问。
  • 代码演示
func DFS(graph [][]int, start int) {visited := make([]bool, len(graph))var dfs func(v int)dfs = func(v int) {visited[v] = truefmt.Print(v, " ")for _, w := range graph[v] {if !visited[w] {dfs(w)}}}dfs(start)
}
http://www.xdnf.cn/news/8368.html

相关文章:

  • 利用Qt绘图随机生成带多种干扰信息的数字图片
  • Lavavel学习笔记(Eloquent ORM/Swoole 定时任务)
  • Logback 在 Spring Boot 中的详细配置
  • 【深尚想!爱普特APT32F1023H8S6单片机重构智能电机控制新标杆】
  • PostgreSQL 软件升级
  • 06 如何定义方法,掌握有参无参,有无返回值,调用数组作为参数的方法,方法的重载
  • 解构赋值与剩余参数:语法特性背后的思考
  • Go语言爬虫系列教程(三)HTML解析技术
  • 【MySQL】剖析事务和锁
  • 疏锦行Python打卡 DAY 9 热力图和子图的绘制
  • 如何备份和恢复Linux系统?
  • RHCSA Linux 系统 硬盘管理
  • linux 内核warn_on/Bug_on
  • 【深度学习-Day 16】梯度下降法 - 如何让模型自动变聪明?
  • 应对进行性核上性麻痹,健康护理铸就温暖防线
  • MATLAB NLP 工具箱 文本预处理教程
  • 四、GPU是如何成为当前电脑中不可或缺的一部分的,opengl在其中起到了什么效果
  • HTA8111 18W内置升压单声道D类音频功放
  • SAP Business One, Web Client: The Advantages of All Worlds
  • 微服务架构下的智能规则解析:Java 解释器模式的高可用实现
  • 【438. 找到字符串中所有字母异位词】
  • 【MySQL】第九弹——索引(下)
  • Unity基础学习(七)Mono中的重要内容(3)协同程序的本质
  • PyQt5安装,在Pycharm上配置以及使用教程
  • 设计模式-备忘录模式
  • 【安装指南】Canal 环境的安装与使用
  • 手写一个简单的线程池
  • SQL实战之索引失效案例详解
  • Python在自动驾驶中的多传感器融合——让智能汽车“看得更清楚”
  • “Agent上车”浪潮来临,谁在引领新一轮的AI座舱交互变革?