当前位置: 首页 > ai >正文

java学习之数据结构:四、树(代码补充)

这部分主要是用代码实现有序二叉树、树遍历、删除节点

目录

1.构建有序二叉树

1.1原理

 1.2插入实现

2.广度优先遍历--队列实现

3.深度优先遍历--递归实现

3.1先序遍历

3.2中序遍历

3.3后序遍历

4.删除

4.1删除叶子节点

4.2删除有一棵子树的节点

4.3删除有两棵子树的节点

5.整体代码


1.构建有序二叉树

1.1原理

左边节点值小于父节点,右边节点值大于父节点,看下图

 1.2插入实现

当传入value值时,判断root节点是否为空:空的话建立新节点做root;不空,建立一个中间节点index,然后循环按照插入原理判断插到哪,代码如下:

 public void insert(int value){Node node = new Node(value);if(root==null){root = node;return;}Node index = root;while(true) {if(index.value>value) {//要插入的节点值小if(index.left==null) {//插入index.left=node;return;}index=index.left;}else{//要插入的节点值大if(index.right==null){index.right=node;return;}index=index.right;}}

2.广度优先遍历--队列实现

广度优先遍历就是层次遍历,使用队列实现。当队列中进入一个新节点,输出后就找这个节点的左右孩子入队。

代码如下:

    public void levelOrder() {Queue<Node> queue = new LinkedList<Node>();if(root!=null) {queue.add(root);}Node index;while (!queue.isEmpty()){index = queue.poll();System.out.print(index.value+Messages.getString("BinaryTree.0")); //$NON-NLS-1$if(index.left!=null){queue.add(index.left);}if(index.right!=null) {queue.add(index.right);}}System.out.println();}

3.深度优先遍历--递归实现

3.1先序遍历

就是根-左-右的顺序,使用递归实现,代码如下:

    /** 先序遍历*/public void beforeOrder(Node node){if(node==null) {return;}System.out.print(node.value+Messages.getString("BinaryTree.1"));beforeOrder(node.left);beforeOrder(node.right);}

3.2中序遍历

使用左-根-右顺序

    /** 中序遍历*/public void inOrder(Node node){if(node==null){return;}inOrder(node.left);System.out.print(node.value+Messages.getString("BinaryTree.2")); //$NON-NLS-1$inOrder(node.right);}

3.3后序遍历

使用左-右-根顺序,代码如下:

    /** 后序遍历*/public void afterOrder(Node node) {if(node==null) {return;}afterOrder(node.left);afterOrder(node.right);System.out.print(node.value+Messages.getString("BinaryTree.3")); }

4.删除

删除比较复杂,要分三种情况:

4.1删除叶子节点

  1. 找到目标节点:在二叉搜索树中定位要删除的目标节点target 。
  2. 找到父节点:确定target节点的父节点parent 。
  3. 判断父节点情况
    • 若无父节点,意味着target是根节点,直接将根节点置为null 。
    • 若有父节点,判断targetparent的左子还是右子:是左子就执行parent.left = null ;是右子就执行parent.right = null 。

需要额外写一个函数来寻找父节点,代码如下:

    /*** 找目标值的父节点*/public Node searchParent(int value) {if(root==null) {return null;}Node index = root;while (index!=null) {if((index.left!=null&&index.left.value==value)||(index.right!=null&&index.right.value==value)) {return index;}else if (index.value>value) {index=index.left;}else {index = index.right;}}return null;}

这部分代码如下:

		if(target.left==null&&target.right==null) {//叶子节点//没有父节点if(parent==null) {root=null;return;}//有父节点if(parent.left!=null&&parent.left.value==value) {parent.left=null;}else {parent.right=null;}}

4.2删除有一棵子树的节点

  1. 找到目标节点:确定要删除的节点target 。
  2. 找到父节点:找到target节点的父节点parent 。
  3. 判断父节点和子树情况
    • 若无父节点,即target是根节点,若target有左子树,让根节点指向其左子树(root = root.left );若有右子树,让根节点指向其右子树(root = root.right )。
    • 若有父节点,先确定targetparent的左子还是右子,再根据target自身有左子树还是右子树,调整parent相应子树指针(如parent.left = target.left 或parent.right = target.right )。

代码如下:

			//有一棵子树的节点//没有父节点if(parent==null) {//目标节点有左子树还是右子树if(target.left!=null) {root = root.left;}else {root=root.right;}return;}//有父节点//判断目标节点是父节点的左孩子还是右孩子if(parent.left!=null&&parent.left.value==value) {//左孩子//目标节点有左子树还是右子树if(target.left!=null) {parent.left = target.left;}else {parent.left = target.right;}}else {//右孩子//目标节点有左子树还是右子树if(target.left!=null) {parent.right = target.left;}else {parent.right = target.right;}}

4.3删除有两棵子树的节点

  1. 找到目标节点:定位要删除的节点target 。
  2. 替换节点选择:获取target左子树的最大值节点或者右子树的最小值节点作为替换节点。
  3. 删除目标节点:用选定的替换节点替代target节点的位置 ,并处理好相关子树连接关系(如parent.left = target.right 或parent.right = target.left 等)。

需要额外写一个判断最小值的函数:

	/*** 找树当中的最小值*/public int min(Node node) {Node index = node;while(index.left!=null) {index=index.left;}return index.value;}

 

代码如下:

 if(target.left!=null&&target.right!=null) {//有两棵子树的节点int minVal = min(target.right);delete(minVal);target.value = minVal;}

5.整体代码

代码如下:

package com.qcby.树;import java.util.LinkedList;
import java.util.Queue;public class BinaryTree {Node root;/*** 插入*/public void insert(int value){Node node = new Node(value);if(root==null){root = node;return;}Node index = root;while(true) {if(index.value>value) {//要插入的节点值小if(index.left==null) {//插入index.left=node;return;}index=index.left;}else{//要插入的节点值大if(index.right==null){index.right=node;return;}index=index.right;}}}/** 广度优先遍历*/public void levelOrder() {Queue<Node> queue = new LinkedList<Node>();if(root!=null) {queue.add(root);}Node index;while (!queue.isEmpty()){index = queue.poll();System.out.print(index.value+Messages.getString("BinaryTree.0")); //$NON-NLS-1$if(index.left!=null){queue.add(index.left);}if(index.right!=null) {queue.add(index.right);}}System.out.println();}/** 先序遍历*/public void beforeOrder(Node node){if(node==null) {return;}System.out.print(node.value+Messages.getString("BinaryTree.1")); //$NON-NLS-1$beforeOrder(node.left);beforeOrder(node.right);}/** 中序遍历*/public void inOrder(Node node){if(node==null){return;}inOrder(node.left);System.out.print(node.value+Messages.getString("BinaryTree.2")); //$NON-NLS-1$inOrder(node.right);}/** 后序遍历*/public void afterOrder(Node node) {if(node==null) {return;}afterOrder(node.left);afterOrder(node.right);System.out.print(node.value+Messages.getString("BinaryTree.3")); //$NON-NLS-1$}/** 查找*/public Node search(int value) {if(root==null) {return null;}Node index = root;while (index!=null) {if(index.value==value){return index;}else if(index.value>value) {index = index.left;}else {index=index.right;}}return null;}/*** 找目标值的父节点*/public Node searchParent(int value) {if(root==null) {return null;}Node index = root;while (index!=null) {if((index.left!=null&&index.left.value==value)||(index.right!=null&&index.right.value==value)) {return index;}else if (index.value>value) {index=index.left;}else {index = index.right;}}return null;}/*** 找树当中的最小值*/public int min(Node node) {Node index = node;while(index.left!=null) {index=index.left;}return index.value;}/*** 删除*/public void delete(int value){if(root==null) {System.out.println(Messages.getString("BinaryTree.4")); return;}//找目标节点Node target = search(value);if(target==null) {System.out.println(Messages.getString("BinaryTree.5")); return;}//找目标节点的父节点Node parent = searchParent(value);//三种情况,分情况讨论if(target.left==null&&target.right==null) {//叶子节点//没有父节点if(parent==null) {root=null;return;}//有父节点if(parent.left!=null&&parent.left.value==value) {parent.left=null;}else {parent.right=null;}}else if(target.left!=null&&target.right!=null) {//有两棵子树的节点int minVal = min(target.right);delete(minVal);target.value = minVal;}else {//有一棵子树的节点//没有父节点if(parent==null) {//目标节点有左子树还是右子树if(target.left!=null) {root = root.left;}else {root=root.right;}return;}//有父节点//判断目标节点是父节点的左孩子还是右孩子if(parent.left!=null&&parent.left.value==value) {//左孩子//目标节点有左子树还是右子树if(target.left!=null) {parent.left = target.left;}else {parent.left = target.right;}}else {//右孩子//目标节点有左子树还是右子树if(target.left!=null) {parent.right = target.left;}else {parent.right = target.right;}}}}@Overridepublic String toString() {return "BinaryTree [root=" + root + "]";}}

 

http://www.xdnf.cn/news/3881.html

相关文章:

  • 【Spring Boot】Spring Boot + Thymeleaf搭建mvc项目
  • flink rocksdb状态说明
  • 阿里云物联网平台--云产品流传
  • 7、Activiti-任务类型
  • 如何快速获取字符串的UTF-8或UTF-16编码二进制数据?数值转换成字符串itoa不是C标准?其它类型转换成字符串?其它类型转换成数值类型?
  • 虚幻引擎作者采访
  • 2.在Openharmony写hello world
  • 蓝桥杯 18. 积木
  • 记9(Torch
  • Leetcode刷题记录32——搜索二维矩阵 II
  • Dubbo(97)如何在物联网系统中应用Dubbo?
  • C语言 ——— 函数
  • Java设计模式: 工厂模式与策略模式
  • COlT_CMDB_linux_tomcat_20250505.sh
  • 【AI大模型】SpringBoot整合Spring AI 核心组件使用详解
  • 基于大模型的子宫腺肌病全流程预测与诊疗方案研究报告
  • 定位理论第一法则在医疗AI编程中的应用
  • Linux /dev/null文件用法介绍
  • 【KWDB 创作者计划】KWDB 2.2.0多模融合架构与分布式时序引擎
  • 如何选择合适的光源?
  • 【Linux网络#17】TCP全连接队列与tcpdump抓包
  • Linux55yum源配置、本机yum源备份,本机yum源配置,网络Yum源配置,自建yum源仓库
  • 人工智能数学基础(十)—— 图论
  • 告别散乱的 @ExceptionHandler:实现统一、可维护的 Spring Boot 错误处理
  • graphviz和dot绘制流程图
  • 金仓数据库 KingbaseES 在电商平台数据库迁移与运维中深入复现剖析
  • MongoDB 整合SpringBoot
  • Webug4.0靶场通关笔记12- 第17关 文件上传之前端拦截(3种方法)
  • Google Agent space时代,浅谈Agent2Agent (A2A) 协议和挑战!
  • 什么是右值引用和移动语义?大白话解释