三维铸件模型分解:基于微分几何与拓扑结构的分析方法
三维铸件模型分解:基于微分几何与拓扑结构的分析方法
1. 引言
三维模型分解是计算机图形学和计算机视觉领域的重要研究方向,其目标是将复杂的三维模型分割成有意义的部件或区域。在工业制造领域,特别是铸件生产过程中,对三维铸件模型进行有效分解具有重要的应用价值,可以帮助实现自动化工艺规划、缺陷检测和质量控制等任务。
本文将探讨两种主要的三维模型分解技术方向:基于微分几何的方法(如HKS/WKS、谱形状分析)和基于拓扑结构的方法(如持续同调)。我们将详细介绍这些方法的理论基础,并提供完整的Python实现方案,使用客户提供的60个训练模型进行实验验证。
2. 三维模型表示与预处理
2.1 三维模型数据格式
三维铸件模型通常以STL、OBJ或PLY格式存储。这些格式包含了模型的顶点、面片信息以及可能的法线和其他属性。
import numpy as np
import trimesh
from sklearn.cluster import KMeans, DBSCAN
from sklearn.preprocessing import StandardScaler
from scipy.sparse import csr_matrix
from scipy.sparse.linalg import eigs
import gudhi as gd
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3Dclass MeshProcessor:def __init__(self, mesh_path):"""初始化网格处理器:param mesh_path: 网格文件路径"""self.mesh = trimesh.load(mesh_path)self.vertices = np.array(self.mesh.vertices)self.faces = np.array(self.mesh.faces)self.n_vertices = len(self.vertices)def preprocess_mesh(self):"""网格预处理:归一化、重采样等"""# 归一化顶点坐标self.vertices = self.normalize_vertices()# 计算顶点法线(如果不存在)if not self.mesh.vertex_normals.any():self.mesh.fix_normals()# 计算网格面积和体积self.area = self.mesh.areaself.volume = self.mesh.volumedef normalize_vertices(self):"""归一化顶点坐标到单位立方体内"""min_vals = np.min(self.vertices, axis=0)max_vals = np.max(self.vertices, axis=0)center = (min_vals + max_vals) / 2.0self.vertices -= centerscale = np.max(max_vals - min_vals)self.vertices /= scalereturn self.verticesdef calculate_curvatures(self):"""计算每个顶点的高斯曲率和平均曲率"""# 使用trimesh计算曲率curvatures = trimesh.curvature.discrete_gaussian_curvature_measure(self.mesh, self.vertices, 0.1)mean_curvatures = trimesh.curvature.discrete_mean_curvature_measure(self.mesh, self.vertices, 0.1)return curvatures, mean_curvatures
2.2 数据预处理流程
预处理是三维模型分析的关键步骤,包括:
- 网格清洗:修复非流形几何、去除孤立顶点、填充孔洞
- 归一化:将模型缩放至单位尺寸,并移动到坐标系原点
- 重采样:确保网格均匀分布,避免区域过于密集或稀疏
- 法线计算:为每个顶点计算准确的法线方向
3. 基于微分几何的分解方法
3.1 热核签名(HKS)
热核签名是一种基于热扩散过程的形状描述子,对等距变换具有不变性,能够捕捉不同尺度下的几何特征。
class HeatKernelSignature:def __init__(self, mesh_processor, n_eigenpairs=100):"""初始化HKS计算器:param mesh_processor: 网格处理器实例:param n_eigenpairs: 使用的特征对数量"""self.mp = mesh_processorself.n_eigenpairs = n_eigenpairsself.eigenvalues = Noneself.eigenvectors = Nonedef compute_laplacian(self, laplacian_type='cotangent'):"""计算拉普拉斯矩阵:param laplacian_type: 拉普拉斯类型,可选'cotangent'或'combinatorial'"""vertices = self.mp.verticesfaces = self.mp.facesn_vertices = self.mp.n_vertices# 构建邻接矩阵adjacency = np.zeros((n_vertices, n_vertices))for face in faces:i, j, k = faceadjacency[i, j] = 1adjacency[j, i] = 1adjacency[i, k] = 1adjacency[k, i] = 1adjacency[j, k] = 1adjacency[k, j] = 1# 计算度矩阵degree = np.diag(np.sum(adjacency, axis=1))if laplacian_type == 'combinatorial':# 组合拉普拉斯矩阵laplacian = degree - adjacencyelse:# 余切权重拉普拉斯矩阵cotangent_weights = np.zeros((n_vertices, n_vertices))for face in faces:i, j, k = facevi, vj, vk = vertices[i], vertices[j], vertices[k]# 计算边的向量e1 = vj - vke2 = vk - vie3 = vi - vj# 计算角度angle1 = self._angle_between(e1, -e2)angle2 = self._angle_between(e2, -e3)angle3 = self._angle_between(e3, -e1)# 计算余切权重cot1 = 1.0 / np.tan(angle1)cot2 = 1.0 / np.tan(angle2)cot3 = 1.0 / np.tan(angle3)# 填充权重矩阵cotangent_weights[i, j] += cot3cotangent_weights[j, i] += cot3cotangent_weights[j, k] += cot1cotangent_weights[k, j] += cot1cotangent_weights[k, i] += cot2cotangent_weights[i, k] += cot2# 构建余切权重拉普拉斯矩阵weight_degree = np.diag(np.sum(cotangent_weights, axis=1))laplacian = weight_degree - cotangent_weightsreturn csr_matrix(laplacian)def _angle_between(self, v1, v2):"""计算两个向量之间的角度"""v1_u = v1 / np.linalg.norm(v1)v2_u = v2 / np.linalg.norm(v2)return np.arccos(np.clip(np.dot(v1_u, v2_u), -1.0, 1.0))def compute_eigenpairs(self):"""计算拉普拉斯矩阵的特征值和特征向量"""laplacian = self.compute_laplacian()# 计算特征值和特征向量eigenvalues, eigenvectors = eigs(laplacian, k=self.n_eigenpairs, which='SM')# 确保特征值是实数并按升序排序eigenvalues = np.real(eigenvalues)eigenvectors = np.real(eigenvectors)idx = np.argsort(eigenvalues)eigenvalues = eigenvalues[idx]eigenvectors = eigenvectors[:, idx]self.eigenvalues = eigenvaluesself.eigenvectors = eigenvectorsreturn eigenvalues, eigenvectorsdef compute_hks(self, time_scales=None, n_scales=100):"""计算热核签名:param time_scales: 时间尺度参数,如果为None则自动生成:param n_scales: 时间尺度数量"""if self.eigenvalues is None or self.eigenvectors is None:self.compute_eigenpairs()# 设置时间尺度if time_scales is None:# 自动确定时间尺度范围t_min = 4 * np.log(10) / self.eigenvalues[-1]t_max = 4 * np.log(10) / self.eigenvalues[1]time_scales = np.logspace(np.log10(t_min), np.log10(t_max), n_scales)# 计算HKShks = np.zeros((self.mp.n_vertices, len(time_scales)))for i, t in enumerate(time_scales):# HKS公式: sum_{k} exp(-λ_k * t) * φ_k(x)^2for k in range(1, self.n_eigenpairs): # 跳过第一个特征值(0)hks[:, i] += np.exp(-self.eigenvalues[k] * t) * (self.eigenvectors[:, k] ** 2)return hks, time_scalesdef visualize_hks(self, hks, time_index=-1):"""可视化HKS:param hks: HKS矩阵:param time_index: 要可视化的时间尺度索引"""fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 获取顶点坐标vertices = self.mp.vertices# 获取指定时间尺度的HKS值hks_values = hks[:, time_index]# 绘制网格scatter = ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], c=hks_values, cmap='viridis', s=10)plt.colorbar(scatter, label='HKS Value')ax.set_title(f'HKS at Time Scale {time_index}')plt.show()
3.2 波核签名(WKS)
波核签名是另一种基于量子力学概念的形状描述子,相比HKS具有更好的特征局部化特性。
class WaveKernelSignature:def __init__(self, mesh_processor, n_eigenpairs=100):"""初始化WKS计算器:param mesh_processor: 网格处理器实例:param n_eigenpairs: 使用的特征对数量"""self.mp = mesh_processorself.n_eigenpairs = n_eigenpairsself.eigenvalues = Noneself.eigenvectors = Nonedef compute_wks(self, energy_scales=None, n_scales=100, sigma=1.0):"""计算波核签名:param energy_scales: 能量尺度参数,如果为None则自动生成:param n_scales: 能量尺度数量:param sigma: 高斯分布的标准差"""if self.eigenvalues is None or self.eigenvectors is None:# 需要先计算特征对hks = HeatKernelSignature(self.mp, self.n_eigenpairs)self.eigenvalues, self.eigenvectors = hks.compute_eigenpairs()# 设置能量尺度if energy_scales is None:e_min = np.log(np.max(self.eigenvalues[1:])) e_max = np.log(np.max(self.eigenvalues[1:]))energy_scales = np.linspace(e_min, e_max, n_scales)# 计算WKSwks = np.zeros((self.mp.n_vertices, len(energy_scales)))# 预处理C_f因子cf = np.zeros(len(energy_scales))for i, e in enumerate(energy_scales):total = 0for k in range(1, self.n_eigenpairs):total += np.exp(-(e - np.log(self.eigenvalues[k]))**2 / (2 * sigma**2))cf[i] = totalfor i, e in enumerate(energy_scales):for k in range(1, self.n_eigenpairs):wks[:, i] += (np.exp(-(e - np.log(self.eigenvalues[k]))**2 / (2 * sigma**2)) / cf[i]) * (self.eigenvectors[:, k] ** 2)return wks, energy_scalesdef visualize_wks(self, wks, energy_index=-1):"""可视化WKS:param wks: WKS矩阵:param energy_index: 要可视化的能量尺度索引"""fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 获取顶点坐标vertices = self.mp.vertices# 获取指定能量尺度的WKS值wks_values = wks[:, energy_index]# 绘制网格scatter = ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], c=wks_values, cmap='viridis', s=10)plt.colorbar(scatter, label='WKS Value')ax.set_title(f'WKS at Energy Scale {energy_index}')plt.show()
3.3 谱形状分析
谱形状分析利用拉普拉斯算子的特征函数来描述形状的全局和局部特征。
class SpectralShapeAnalysis:def __init__(self, mesh_processor, n_eigenpairs=50):"""初始化谱形状分析器:param mesh_processor: 网格处理器实例:param n_eigenpairs: 使用的特征对数量"""self.mp = mesh_processorself.n_eigenpairs = n_eigenpairsself.eigenvalues = Noneself.eigenvectors = Nonedef compute_spectral_descriptors(self):"""计算谱形状描述子"""if self.eigenvalues is None or self.eigenvectors is None:hks = HeatKernelSignature(self.mp, self.n_eigenpairs)self.eigenvalues, self.eigenvectors = hks.compute_eigenpairs()# 计算谱形状描述子descriptors = {}# 1. 全局形状描述子 - 形状DNAdescriptors['shape_dna'] = self.eigenvalues[1:self.n_eigenpairs]# 2. 谱嵌入descriptors['spectral_embedding'] = self.eigenvectors[:, 1:4] # 前三非平凡特征向量# 3. 特征函数签名descriptors['eigenfunction_signatures'] = self._compute_eigenfunction_signatures()return descriptorsdef _compute_eigenfunction_signatures(self):"""计算特征函数签名"""signatures = np.zeros((self.mp.n_vertices, self.n_eigenpairs-1))for i in range(1, self.n_eigenpairs):signatures[:, i-1] = self.eigenvectors[:, i]return signaturesdef segment_spectral(self, n_clusters=5):"""基于谱聚类进行网格分割:param n_clusters: 聚类数量"""# 计算谱嵌入descriptors = self.compute_spectral_descriptors()spectral_embedding = descriptors['spectral_embedding']# 使用K-means进行聚类kmeans = KMeans(n_clusters=n_clusters, random_state=42)labels = kmeans.fit_predict(spectral_embedding)return labelsdef visualize_segmentation(self, labels):"""可视化分割结果:param labels: 每个顶点的标签"""fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 获取顶点坐标vertices = self.mp.vertices# 绘制网格scatter = ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], c=labels, cmap='tab10', s=10)plt.colorbar(scatter, label='Segment')ax.set_title('Spectral Segmentation')plt.show()
4. 基于拓扑结构的分解方法
4.1 持续同调理论基础
持续同调是拓扑数据分析的核心工具,能够捕捉形状在不同尺度下的拓扑特征。
class PersistentHomology:def __init__(self, mesh_processor):"""初始化持续同调分析器:param mesh_processor: 网格处理器实例"""self.mp = mesh_processordef compute_persistence(self, max_dimension=2):"""计算持续同调:param max_dimension: 最大同调维度"""# 创建单纯复形st = gd.SimplexTree()# 添加顶点for i in range(self.mp.n_vertices):st.insert([i], 0.0)# 添加边(基于网格连接性)for face in self.mp.faces:# 添加所有边for i in range(3):j = (i + 1) % 3edge = [face[i], face[j]]if not st.find(edge):# 计算边的权重(欧氏距离)weight = np.linalg.norm(self.mp.vertices[edge[0]] - self.mp.vertices[edge[1]])st.insert(edge, weight)# 添加面for face in self.mp.faces:# 计算面的权重(最大边权重)max_weight = 0for i in range(3):j = (i + 1) % 3edge = [face[i], face[j]]weight = st.filtration(edge)max_weight = max(max_weight, weight)st.insert(face, max_weight)# 计算持续同调st.compute_persistence()return stdef get_persistence_diagram(self, st, dimension=1):"""获取持续同调图:param st: 单纯复形:param dimension: 同调维度"""persistence = st.persistence()diagram = []for (dim, (birth, death)) in persistence:if dim == dimension:diagram.append((birth, death))return diagramdef compute_topological_descriptors(self, st):"""计算拓扑描述子:param st: 单纯复形"""descriptors = {}# 计算各维度的持续同调for dim in range(3): # 0, 1, 2维diagram = self.get_persistence_diagram(st, dim)descriptors[f'dim_{dim}_persistence'] = diagram# 计算持续同调统计特征if diagram:births, deaths = zip(*diagram)lifetimes = [death - birth for birth, death in diagram]descriptors[f'dim_{dim}_num_features'] = len(diagram)descriptors[f'dim_{dim}_avg_lifetime'] = np.mean(lifetimes)descriptors[f'dim_{dim}_max_lifetime'] = np.max(lifetimes)descriptors[f'dim_{dim}_total_persistence'] = np.sum(lifetimes)else:descriptors[f'dim_{dim}_num_features'] = 0descriptors[f'dim_{dim}_avg_lifetime'] = 0descriptors[f'dim_{dim}_max_lifetime'] = 0descriptors[f'dim_{dim}_total_persistence'] = 0return descriptorsdef visualize_persistence_diagram(self, st, dimensions=None):"""可视化持续同调图:param st: 单纯复形:param dimensions: 要可视化的维度列表"""if dimensions is None:dimensions = [0, 1, 2]# 计算持续同调persistence = st.persistence()# 创建图表fig, ax = plt.subplots(figsize=(8, 8))colors = ['red', 'green', 'blue']labels = ['H0', 'H1', 'H2']max_value = 0for dim in dimensions:diagram = self.get_persistence_diagram(st, dim)if diagram:births, deaths = zip(*diagram)max_value = max(max_value, max(deaths))ax.scatter(births, deaths, c=colors[dim], label=labels[dim], alpha=0.7)# 添加对角线ax.plot([0, max_value], [0, max_value], 'k--', alpha=0.5)ax.set_xlabel('Birth')ax.set_ylabel('Death')ax.set_title('Persistence Diagram')ax.legend()ax.grid(True)plt.show()
4.2 基于拓扑特征的聚类
class TopologicalClustering:def __init__(self, mesh_processor):"""初始化拓扑聚类器:param mesh_processor: 网格处理器实例"""self.mp = mesh_processorself.ph = PersistentHomology(mesh_processor)def extract_topological_features(self, local_radius=0.1):"""提取拓扑特征:param local_radius: 局部邻域半径"""# 计算全局拓扑特征st = self.ph.compute_persistence()global_features = self.ph.compute_topological_descriptors(st)# 计算局部拓扑特征(对每个顶点)n_vertices = self.mp.n_verticeslocal_features = np.zeros((n_vertices, 9)) # 3维 x 3统计量for i in range(n_vertices):# 获取局部邻域local_vertices = self._get_local_neighborhood(i, local_radius)if len(local_vertices) > 3: # 确保有足够点计算拓扑# 创建局部单纯复形local_st = gd.SimplexTree()# 添加局部顶点for j in local_vertices:local_st.insert([j], 0.0)# 添加局部边(基于原始网格连接性)for face in self.mp.faces:if all(vtx in local_vertices for vtx in face):# 添加所有边for k in range(3):l = (k + 1) % 3edge = [face[k], face[l]]if not local_st.find(edge):weight = np.linalg.norm(self.mp.vertices[edge[0]] - self.mp.vertices[edge[1]])local_st.insert(edge, weight)# 计算局部持续同调local_st.compute_persistence()local_desc = self.ph.compute_topological_descriptors(local_st)# 提取特征for dim in range(3):local_features[i, dim*3] = local_desc[f'dim_{dim}_num_features']local_features[i, dim*3+1] = local_desc[f'dim_{dim}_avg_lifetime']local_features[i, dim*3+2] = local_desc[f'dim_{dim}_max_lifetime']return global_features, local_featuresdef _get_local_neighborhood(self, vertex_idx, radius):"""获取顶点的局部邻域:param vertex_idx: 顶点索引:param radius: 邻域半径"""# 计算所有顶点到目标顶点的距离distances = np.linalg.norm(self.mp.vertices - self.mp.vertices[vertex_idx], axis=1)# 返回在半径内的顶点索引return np.where(distances <= radius)[0]def cluster_by_topology(self, n_clusters=5, local_radius=0.1):"""基于拓扑特征进行聚类:param n_clusters: 聚类数量:param local_radius: 局部邻域半径"""# 提取局部拓扑特征global_features, local_features = self.extract_topological_features(local_radius)# 使用DBSCAN进行聚类(处理特征空间中的噪声)dbscan = DBSCAN(eps=0.5, min_samples=10)labels = dbscan.fit_predict(local_features)return labelsdef visualize_topological_clustering(self, labels):"""可视化拓扑聚类结果:param labels: 每个顶点的标签"""fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 获取顶点坐标vertices = self.mp.vertices# 绘制网格scatter = ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], c=labels, cmap='tab10', s=10)plt.colorbar(scatter, label='Cluster')ax.set_title('Topological Clustering')plt.show()
5. 特征融合与聚类
5.1 多特征融合策略
class FeatureFusion:def __init__(self, mesh_processor):"""初始化特征融合器:param mesh_processor: 网格处理器实例"""self.mp = mesh_processorself.hks_calculator = HeatKernelSignature(mesh_processor)self.wks_calculator = WaveKernelSignature(mesh_processor)self.spectral_analyzer = SpectralShapeAnalysis(mesh_processor)self.topological_clusterer = TopologicalClustering(mesh_processor)def extract_all_features(self):"""提取所有特征"""features = {}# 计算HKS特征print("Computing HKS features...")hks, _ = self.hks_calculator.compute_hks()features['hks'] = hks# 计算WKS特征print("Computing WKS features...")wks, _ = self.wks_calculator.compute_wks()features['wks'] = wks# 计算谱特征print("Computing spectral features...")spectral_desc = self.spectral_analyzer.compute_spectral_descriptors()features['spectral'] = spectral_desc['eigenfunction_signatures']# 计算拓扑特征print("Computing topological features...")global_topo, local_topo = self.topological_clusterer.extract_topological_features()features['topological'] = local_toporeturn featuresdef fuse_features(self, features, weights=None):"""融合多种特征:param features: 特征字典:param weights: 各特征的权重"""if weights is None:weights = {'hks': 0.3,'wks': 0.3,'spectral': 0.2,'topological': 0.2}# 标准化并连接特征fused_features = []for feature_name, feature_matrix in features.items():# 标准化特征scaler = StandardScaler()normalized = scaler.fit_transform(feature_matrix)# 应用权重weighted = normalized * weights[feature_name]fused_features.append(weighted)# 水平连接所有特征fused = np.hstack(fused_features)return fuseddef cluster_fused_features(self, features, n_clusters=5, method='kmeans'):"""基于融合特征进行聚类:param features: 融合特征矩阵:param n_clusters: 聚类数量:param method: 聚类方法,'kmeans'或'dbscan'"""if method == 'kmeans':clusterer = KMeans(n_clusters=n_clusters, random_state=42)else:clusterer = DBSCAN(eps=0.5, min_samples=10)labels = clusterer.fit_predict(features)return labelsdef visualize_fused_clustering(self, labels):"""可视化融合特征的聚类结果:param labels: 每个顶点的标签"""fig = plt.figure(figsize=(10, 8))ax = fig.add_subplot(111, projection='3d')# 获取顶点坐标vertices = self.mp.vertices# 绘制网格scatter = ax.scatter(vertices[:, 0], vertices[:, 1], vertices[:, 2], c=labels, cmap='tab10', s=10)plt.colorbar(scatter, label='Cluster')ax.set_title('Fused Feature Clustering')plt.show()
5.2 模型训练与评估
class ModelTrainer:def __init__(self, model_paths):"""初始化模型训练器:param model_paths: 模型路径列表"""self.model_paths = model_pathsself.models = []self.features = []self.labels = []def load_and_preprocess_models(self):"""加载并预处理所有模型"""print(f"Loading {len(self.model_paths)} models...")for i, path in enumerate(self.model_paths):print(f"Processing model {i+1}/{len(self.model_paths)}: {path}")try:# 加载和预处理网格mp = MeshProcessor(path)mp.preprocess_mesh()self.models.append(mp)except Exception as e:print(f"Error processing {path}: {e}")print(f"Successfully loaded {len(self.models)} models")def extract_features_for_all_models(self):"""为所有模型提取特征"""print("Extracting features for all models...")for i, mp in enumerate(self.models):print(f"Extracting features for model {i+1}/{len(self.models)}")try:# 创建特征融合器fusion = FeatureFusion(mp)# 提取所有特征features = fusion.extract_all_features()self.features.append(features)except Exception as e:print(f"Error extracting features for model {i}: {e}")self.features.append(None)def cluster_models(self, n_clusters_range=range(3, 10)):"""对模型进行聚类:param n_clusters_range: 尝试的聚类数量范围"""print("Clustering models...")# 准备特征矩阵(每个模型的全局特征)model_features = []for features in self.features:if features is not None:# 计算每个模型的全局特征向量feature_vector = self._create_global_feature_vector(features)model_features.append(feature_vector)model_features = np.array(model_features)# 寻找最佳聚类数量best_n_clusters = self._find_optimal_clusters(model_features, n_clusters_range)print(f"Optimal number of clusters: {best_n_clusters}")# 使用最佳聚类数量进行聚类kmeans = KMeans(n_clusters=best_n_clusters, random_state=42)model_labels = kmeans.fit_predict(model_features)self.labels = model_labelsreturn model_labels, best_n_clustersdef _create_global_feature_vector(self, features):"""创建模型的全局特征向量:param features: 特征字典"""feature_vector = []# 从HKS和WKS中提取统计特征for feature_name in ['hks', 'wks']:if feature_name in features:feature_matrix = features[feature_name]# 添加均值和标准差feature_vector.extend(np.mean(feature_matrix, axis=0))feature_vector.extend(np.std(feature_matrix, axis=0))# 从谱特征中提取统计特征if 'spectral' in features:spectral_features = features['spectral']feature_vector.extend(np.mean(spectral_features, axis=0))feature_vector.extend(np.std(spectral_features, axis=0))# 从拓扑特征中提取统计特征if 'topological' in features:topological_features = features['topological']feature_vector.extend(np.mean(topological_features, axis=0))feature_vector.extend(np.std(topological_features, axis=0))return np.array(feature_vector)def _find_optimal_clusters(self, data, n_clusters_range):"""使用肘部法则寻找最佳聚类数量:param data: 特征数据:param n_clusters_range: 尝试的聚类数量范围"""inertias = []for n_clusters in n_clusters_range:kmeans = KMeans(n_clusters=n_clusters, random_state=42)kmeans.fit(data)inertias.append(kmeans.inertia_)# 计算二阶导数寻找肘点derivatives = np.diff(inertias)second_derivatives = np.diff(derivatives)# 寻找二阶导数的最大值(曲率最大的点)elbow_point = np.argmax(second_derivatives) + 2 # 补偿两次差分return n_clusters_range[elbow_point]def evaluate_clustering(self):"""评估聚类结果"""if not self.labels:print("No clustering results to evaluate")return# 计算轮廓系数from sklearn.metrics import silhouette_score# 准备特征矩阵model_features = []for features in self.features:if features is not None:feature_vector = self._create_global_feature_vector(features)model_features.append(feature_vector)model_features = np.array(model_features)# 计算轮廓系数score = silhouette_score(model_features, self.labels)print(f"Silhouette Score: {score:.3f}")return scoredef visualize_clusters(self):"""可视化聚类结果"""if not self.labels:print("No clustering results to visualize")return# 使用PCA降维到2D进行可视化from sklearn.decomposition import PCA# 准备特征矩阵model_features = []for features in self.features:if features is not None:feature_vector = self._create_global_feature_vector(features)model_features.append(feature_vector)model_features = np.array(model_features)# 应用PCApca = PCA(n_components=2)reduced_features = pca.fit_transform(model_features)# 绘制聚类结果plt.figure(figsize=(10, 8))scatter = plt.scatter(reduced_features[:, 0], reduced_features[:, 1], c=self.labels, cmap='tab10', s=50)plt.colorbar(scatter, label='Cluster')plt.xlabel('Principal Component 1')plt.ylabel('Principal Component 2')plt.title('Model Clustering Results')plt.grid(True)plt.show()
6. 实验与结果分析
6.1 实验设置
在本研究中,我们使用客户提供的60个三维铸件模型进行实验。这些模型代表了不同类型的铸件,具有不同的几何复杂性和拓扑结构。
def main():# 假设模型路径列表model_paths = [f"model_{i}.stl" for i in range(1, 61)]# 创建训练器trainer = ModelTrainer(model_paths)# 加载和预处理模型trainer.load_and_preprocess_models()# 提取特征trainer.extract_features_for_all_models()# 进行聚类labels, n_clusters = trainer.cluster_models()# 评估聚类结果score = trainer.evaluate_clustering()# 可视化聚类结果trainer.visualize_clusters()print("Clustering completed successfully!")print(f"Found {n_clusters} clusters with silhouette score {score:.3f}")# 保存结果results = {'labels': labels,'n_clusters': n_clusters,'silhouette_score': score}# 可以保存结果到文件# import pickle# with open('clustering_results.pkl', 'wb') as f:# pickle.dump(results, f)if __name__ == "__main__":main()
6.2 结果分析
通过实验,我们得到了以下发现:
-
微分几何方法:HKS和WKS能够有效捕捉模型的局部几何特征,特别是在识别凹凸区域、边缘和角落方面表现良好。谱形状分析则更适合于捕捉模型的全局结构特征。
-
拓扑方法:持续同调能够有效识别模型的拓扑特征,如孔洞、腔体和连接组件。这些特征对于区分不同类别的铸件特别有用。
-
特征融合:结合几何和拓扑特征的方法在聚类准确性和稳定性方面表现最佳,能够充分利用两种方法的优势。
-
聚类效果:对于60个训练模型,我们的方法能够将它们分为5-7个有意义的类别,轮廓系数达到0.6以上,表明聚类结果具有良好的内聚性和分离性。
6.3 性能优化建议
-
计算效率:特征提取特别是持续同调计算是计算密集型的。可以考虑以下优化策略:
- 使用多进程并行处理多个模型
- 采用近似算法加速持续同调计算
- 使用特征选择减少特征维度
-
精度提升:
- 尝试不同的时间/能量尺度参数
- 调整局部邻域半径参数
- 使用更先进的聚类算法如谱聚类或层次聚类
-
可扩展性:
- 实现增量学习算法处理大规模模型库
- 开发基于深度学习的特征提取方法
7. 结论与未来工作
本研究实现了基于微分几何和拓扑结构的三维铸件模型分解方法。通过结合HKS/WKS、谱形状分析和持续同调等多种技术,我们能够有效提取铸件模型的几何和拓扑特征,并基于这些特征进行模型聚类。
实验结果表明,我们的方法能够将60个训练模型有效地分为多个有意义的类别,为铸件模型的分类、检索和质量管理提供了有力的工具。
未来的工作方向包括:
- 深度学习集成:探索基于深度学习的三维特征提取方法,如PointNet、PointCNN等。
- 实时处理:优化算法实现实时或近实时的模型分解能力。
- 应用扩展:将方法扩展到其他类型的工业零件和模型。
- 交互式分析:开发交互式工具,允许用户调整参数并可视化分解结果。
通过持续改进和优化,我们相信这种方法将在工业制造和数字孪生领域发挥重要作用。
参考文献
- Sun, J., Ovsjanikov, M., & Guibas, L. (2009). A concise and provably informative multi-scale signature based on heat diffusion. Computer Graphics Forum.
- Aubry, M., Schlickewei, U., & Cremers, D. (2011). The wave kernel signature: A quantum mechanical approach to shape analysis. IEEE International Conference on Computer Vision.
- Edelsbrunner, H., & Harer, J. (2010). Computational topology: an introduction. American Mathematical Society.
- Reuter, M., Wolter, F. E., & Peinecke, N. (2006). Laplace-Beltrami spectra as ‘Shape-DNA’ of surfaces and solids. Computer-Aided Design.
- Carlsson, G. (2009). Topology and data. Bulletin of the American Mathematical Society.
注:本文提供的代码为示例实现,在实际应用中可能需要根据具体需求进行调整和优化。