当前位置: 首页 > web >正文

AcWing 223. 阿九大战朱最学——扩展欧几里得算法

题目来源

223. 阿九大战朱最学 - AcWing题库

题目描述

自从朱最学搞定了 QQ 农场以后,就开始捉摸去 QQ 牧场干些事业,不仅在自己的牧场养牛,还到阿九的牧场放牛!

阿九很生气,有一次朱最学想知道阿九牧场奶牛的数量,于是阿九想狠狠耍朱最学一把。

举个例子,假如有 1616 头奶牛,如果建了 33 个牛棚,剩下 11 头牛就没有地方安家了。

如果建造了 55 个牛棚,但是仍然有 11 头牛没有地方去,然后如果建造了 77 个牛棚,还有 22 头没有地方去。

你作为阿九的私人秘书理所当然要将准确的奶牛数报给阿九,你该怎么办?

输入格式

第一行包含一个整数 n表示建立牛棚的次数。

接下来 n行,每行两个整数 ai,bi,表示建立了 ai 个牛棚,有 bi 头牛没有去处。

你可以假定不同 ai 之间互质。

输出格式

输出包含一个正整数,即为阿九至少养奶牛的数目。

数据范围

1≤n≤101≤≤10,
1≤ai,bi≤12000001≤1200000,
所有 ai 的乘积不超过 10121012。

输入样例:
3
3 1
5 1
7 2
输出样例:
16

算法分析 

中国剩余定理的经典题;

这道题可以列出方程组,只需计算

其步骤为:

1.计算模数的乘积:M=m1m2......mk;

2.对每个模数mi,计算Mi=M/mi;

3.对每个Mi求解Mi在模mi的逆元yi,即满足Mi*yi同余1模mi;

4.最终解x为:x=∑ai*Mi*yi(mod M),i∈(1,k),其中ai是每个同余方程的余数

Code

#include <bits/stdc++.h>
using namespace std;typedef long long LL;
const int N=1005;
LL m[N],a[N];LL exgcd(LL a,LL b,LL &x,LL &y) {//十年Oi一场空,不开longlong见祖宗if(b==0) {x=1,y=0;return a;}LL d=exgcd(b,a%b,y,x);y-=(a/b)*x;return d;
}int main() {int n;cin>>n;LL M=1;for(int i=1; i<=n; i++) {cin>>m[i]>>a[i];M*=m[i];}LL t=0;for(int i=1; i<=n; i++) {LL x,y;LL Mi=M/m[i];exgcd(Mi,m[i],x,y);t=(t+a[i]*Mi%M*x)%M;//按照分析过程进行处理}t=(t+M)%M;cout<<t<<endl;return 0;
}

http://www.xdnf.cn/news/7476.html

相关文章:

  • Javascript本地存储的方式有哪些?区别及应用场景?(含Deep Seek讲解)
  • [长城杯 2024]anote
  • 怎么利用JS根据坐标判断构成单个多边形是否合法
  • HarmonyOS Next应用分层架构下组件封装开发实践
  • 子网前缀长度
  • 【General Agent Benchmark】论文分享No.12:LLF-Bench
  • Python训练第三十天
  • 新一代请求库niquests使用入门
  • 告别Spring AI!我的Java轻量AI框架实践(支持多模型接入|注解式MCP架构|附开源地址)
  • “星睿O6”AI PC 开发套件评测: NPU 算力测评(1)
  • DAY30
  • Docker 运维管理
  • 使用shell快速删除Docker容器、镜像和存储内容
  • Python海龟绘图-斗地主
  • redis在spring boot中异常退出
  • 【C语言】贪吃蛇小游戏
  • Python 实例传递的艺术:四大方法解析与最佳实践
  • 每日算法 -【Swift 算法】不含重复字符的最长子串:暴力解法 vs 滑动窗口
  • Python 实现图片浏览和选择工具
  • 出海跨境电商内容管理难?Baklib 助力打造多语言知识库与智能素材中心
  • Stable Diffusion 学习笔记02
  • 【Nextcloud】使用 LNMP 架构搭建私有云存储:Nextcloud 实战指南
  • TYUT-企业级开发教程-第5章
  • 【C++]string模拟实现
  • laravel 通过Validator::make验证后,如何拿到验证后的值
  • nmcli connection reload
  • C++ qt基类的成员变量,在派生类中需要具有不同的数据类型的解决方法
  • 【NLP】34. 数据专题:如何打造高质量训练数据集
  • 【深度学习基础/面试高频问题】常见的归一化
  • TS01S:单通道差分灵敏度校准电容触摸传感器芯片