当前位置: 首页 > web >正文

贝叶斯优化Transformer融合支持向量机多变量回归预测,附相关性气泡图、散点密度图,Matlab实现

贝叶斯优化Transformer融合支持向量机多变量回归预测,附相关性气泡图、散点密度图,Matlab实现

目录

    • 贝叶斯优化Transformer融合支持向量机多变量回归预测,附相关性气泡图、散点密度图,Matlab实现
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

基本介绍

1.BO-Transformer+SVM多变量回归预测,Bayes-Transformer+SVM(程序可以作为论文创新支撑,目前尚未发表);

2.Bayes-Transformer提取特征后,输入SVM中,运行环境为Matlab2023b及以上;

3.data为数据集,输入多个变量,输出单个变量,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MSE、RMSE、MAE、MAPE、MBE等多指标评价。
代码功能
此代码实现了一个结合Transformer模型和SVM的回归预测框架,具体功能包括:

数据预处理:导入数据,构建输入-输出。

模型构建:使用贝叶斯优化搜索Transformer的超参数(注意力头数、学习率、正则化系数),构建包含位置嵌入和自注意力机制的Transformer模型。

特征提取与预测:利用训练好的Transformer提取序列特征,输入到SVM模型中进行回归预测。

性能评估:计算RMSE、R²、MAE、MAPE、MBE、MSE等指标,并绘制预测结果对比图及误差分析图。

主要原理
数据建模:转换为监督学习问题。

Transformer模型:利用自注意力机制捕捉序列中的长程依赖关系,位置嵌入层编码时间顺序信息。

贝叶斯优化:在超参数空间中搜索最优组合,平衡探索与利用,提高模型性能。

SVM回归:将Transformer提取的高维特征作为输入,利用SVM的非线性拟合能力进行预测。

模型结构
Transformer部分:

输入层:接收序列数据,维度为原始特征数(numChannels)。

位置嵌入层:为输入序列添加位置编码,增强模型对时序的感知。

自注意力层:包含两个多头自注意力层(头数由贝叶斯优化确定),用于捕捉序列内部的依赖关系。

全连接层:将注意力输出映射到目标维度(outputSize=1)。

SVM部分:

使用Transformer中间层的激活值作为特征,通过支持向量回归(SVR)进行最终预测。

算法流程
数据准备:

划分输入-输出序列对,归一化数据。

将训练集和测试集转换为序列输入格式。

超参数优化:

贝叶斯优化搜索numHeads、InitialLearnRate、L2Regularization。

模型训练:

使用优化后的超参数训练Transformer模型。

提取Transformer中间层特征,训练SVM模型。

预测与评估:

对训练集和测试集进行预测,反归一化后计算误差指标。

绘制预测对比图、误差分布图及拟合效果图。
在这里插入图片描述

程序设计

完整源码私信回复贝叶斯优化Transformer融合支持向量机多变量回归预测,附相关性气泡图、散点密度图,Matlab实现

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
result = xlsread('数据集.xlsx');%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征长度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train, -1, 1);%将训练集和测试集的数据调整到01之间
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, -1, 1);% 对测试集数据做归一化
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
%   将数据平铺成1维数据只是一种处理方式
%   也可以平铺成2维数据,以及3维数据,需要修改对应模型结构
%   但是应该始终和输入层数据结构保持一致
p_train =  double(reshape(p_train, f_, 1, 1, M));
p_test  =  double(reshape(p_test , f_, 1, 1, N));
t_train =  double(t_train)';
t_test  =  double(t_test )';%%  数据格式转换
for i = 1 : MLp_train{i, 1} = p_train(:, :, 1, i);
endfor i = 1 : NLp_test{i, 1}  = p_test( :, :, 1, i);
end

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/129215161
[2] https://blog.csdn.net/kjm13182345320/article/details/128105718

http://www.xdnf.cn/news/6387.html

相关文章:

  • 【Python 正则表达式】
  • PostgreSQL 联合索引生效条件
  • 揭秘LLM:矩阵运算揭秘LLM单词生成机制
  • C++11多线程thread、原子变量
  • Kafka 中过多的 topic 导致整体上性能变慢的原因
  • Spark--RDD中的转换算子
  • Node.js
  • Miniconda介绍介绍和使用
  • Web3.0:互联网的去中心化未来
  • FPGA: UltraScale+ bitslip实现(ISERDESE3)
  • 记一次bug排查(.exe链接mysql失败)-每天学习一点点
  • (5)python开发经验
  • 组合问题(去重)
  • C++23 新增的查找算法详解:ranges::find_last 系列函数
  • uniapp微信小程序-长按按钮百度语音识别回显文字
  • 印度Rummy游戏支付通道申请策略:技巧类游戏的合规与创新
  • 从零开始学习three.js(18):一文详解three.js中的着色器Shader
  • Spring MVC HttpMessageConverter 的作用是什么?
  • 区块链blog1__合作与信任
  • 电池组PACK自动化生产线:多领域电池生产的“智能引擎”
  • 【美团】后端一面复盘|项目驱动 + 手撕 + JVM + 数据库全面覆盖
  • 重磅发布!OpenAI 推出最新模型 GPT-4.1 系列!
  • 多模态大语言模型arxiv论文略读(七十七)
  • 【氮化镓】HfO2钝化优化GaN 器件性能
  • 【React全栈进阶】从组件设计到性能优化实战指南
  • 什么是TCP协议?它存在哪些安全挑战?
  • K8S Gateway API 快速开始、胎教级教程
  • 无人设备遥控器之无线通讯技术篇
  • 随机矩阵放大的方式 生成相位数据集,用于相位展开
  • 技术更新频繁,团队如何适应变化