当前位置: 首页 > web >正文

PandasAI连接LLM进行智能数据分析

1. 引言

Pandas是一个数据分析开源组件库,提供了高性能、易用的数据结构和数据分析工具。它的核心的功能是其DataFrame对象,这是一个带有行和列标签的二维表格数据结构,支持缺失数据处理、时间序列功能、灵活的数据输入输出方法、数据对齐和分组操作等特性。

PandasAI则通过结合Pandas和生成式AI技术,使用户能够以自然语言与数据进行交互,从而简化数据分析流程。它的核心目标是让数据分析变得更直观、高效,甚至无需编写复杂代码即可完成数据查询、清洗、可视化等任务。

2. 详述

Pandas进行数据分析的流程笔者不是很熟练,这里重点关注一个问题就是PandasAI如何连接现有的大模型比如DeepSeek来进行智能数据分析。

由于经验不足,笔者在测试PandasAI的时候,将相关的组件都安装在默认全局的Python环境中了,导致版本有点低,使用的是v2版本。现在普通推荐使用Anaconda这样的工具安装虚拟环境来进行Python的依赖管理。不过根据PandasAI官网文档1提示,PandasAI 3.0仍然是beta版本,并且推荐使用Poetry管理Python依赖。所以这里笔者也就没有想升级到3.0,暂时先用稳定一定的2.X版本。

解决掉PandasAI 2.X的版本依赖问题之后,通过PandasAI连接DeepSeek进行智能数据分析的案例代码实现如下:

import pandas as pd
from pandasai import SmartDataframe
from pandasai.llm.base import LLM
import requests# 自定义DeepSeek大模型
class DeepSeekLLM(LLM):def __init__(self, api_url:str, api_key: str, model: str):super().__init__()self.api_url = api_urlself.api_key = api_keyself.model = model        def call(self, instruction, context: dict = None, **kwargs) -> str:  """PandasAI 用来向 LLM 模型发起请求的接口入口。Args:instruction (str): PandasAI 传入的 prompt,可能是 string 或自定义对象,表示用户的问题。context (dict, optional): 包含上下文信息(例如 DataFrame 元数据等),在部分 LLM 中可用。**kwargs: 保留接口向前兼容(比如未来增加其他参数时也能传入)。Returns:str: 执行指令后的结果输出。"""# 把复杂的 Prompt 对象变成字符串if not isinstance(instruction, str):instruction = str(instruction)# 请求头headers = {"Authorization": f"Bearer {self.api_key}",   # DeepSeek身份验证"Content-Type": "application/json"}# 兼容 OpenAI 的 Chat Completion API的对话消息格式messages = [{"role": "system", # 设定 LLM 的行为"content": "You are a helpful AI assistant for data analysis."},{"role": "user",  # 是实际的问题"content": instruction}]# 请求体payload = {"model": self.model,"messages": messages,"temperature": 0.0 # 值越低,回答的效果越稳定}# 发送post请求response = requests.post(self.api_url, headers=headers, json=payload)# 检查返回状态码,如果不是 200 则报错。if response.status_code != 200:raise Exception(f"DeepSeek API Error: {response.status_code}, {response.text}")# 解析返回结果result = response.json()return result["choices"][0]["message"]["content"]@propertydef type(self):return "deepseek-custom"# Sample DataFrame
sales_by_country = pd.DataFrame({"country": ["United States", "United Kingdom", "France", "Germany", "Italy", "Spain", "Canada", "Australia", "Japan", "China"],"sales": [5000, 3200, 2900, 4100, 2300, 2100, 2500, 2600, 4500, 7000]
})# 用自定义的 DeepSeek LLM
llm = DeepSeekLLM(api_url = "https://dashscope.aliyuncs.com/compatible-mode/v1/chat/completions",api_key="sk-xxx", model="deepseek-r1")df = SmartDataframe(sales_by_country, config={"llm": llm})result = df.chat('列出销售额最高的3个国家。')print(result)

如代码所示,关键的所在是需要自定义一个继承自LLM的能够连接DeepSeek的类DeepSeekLLM。其实PandasAI 2.X是可以使用提供了支持使用OpenAI的接口的,而连接DeepSeek的接口一般会兼容OpenAI。但是笔者尝试了之后不行,不能传入自定义的LLM地址。没办法只能自己自定义一个继承自LLMDeepSeekLLM类。

DeepSeekLLM类的关键就是call函数的实现,这是PandasAI用来向LLM模型发起请求的接口的入口。在这个函数实现中的关键就是通过兼容OpenAI的Chat API向自定义的DeepSeek服务发起post请求,具体的细节笔者已经在代码中进行注释,另外也可以查阅OpenAI API的相关文档。这里的实现并没有像《连接语言大模型(LLM)服务进行对话》一样使用openai模块或者LangChain框架,而是直接使用requests来发送HTTP请求,显得更加底层一点,不过原理都差不多。

最终运行的结果如下所示:

country  sales
0          China   7000
0          China   7000
1  United States   5000
2          Japan   4500

  1. PandasAI官方文档 ↩︎

http://www.xdnf.cn/news/16519.html

相关文章:

  • Tkinter美化 - 告别土味Python GUI
  • 医疗AI语义潜空间分析研究:进展与应用
  • 2507C++,APC可以干的活
  • 第二阶段-第二章—8天Python从入门到精通【itheima】-138节(MySQL的综合案例)
  • 记录一次薛定谔bug
  • SpringAI入门及浅实践,实战 Spring‎ AI 调用大模型、提示词工程、对话记忆、Adv‎isor 的使用
  • goland编写go语言导入自定义包出现: package xxx is not in GOROOT (/xxx/xxx) 的解决方案
  • red靶机
  • zabbix-agent静默安装
  • AI编程自动化与算法优化实践指南
  • Oracle 19C RU 19.28 升级和安装
  • Spring Cloud 详解与搭建全攻略
  • MySQL的底层原理--InnoDB数据页结构
  • Java实现大根堆与小根堆详解
  • 53. 最大子数组和
  • 在 Windows 系统中实现 WinToGo 的 VHDX 文件切换使用的常见方法
  • 9.3 快速傅里叶变换
  • Cortex-M内核SysTick定时器介绍
  • [2025CVPR-图象合成、生成方向]ODA-GAN:由弱监督学习辅助的正交解耦比对GAN 虚拟免疫组织化学染色
  • 【Keepalived】高可用集群
  • 香港本地和国际金融科技应用
  • Javaweb————HTTP的九种请求方法介绍
  • RoPE:相对位置编码的旋转革命——原理、演进与大模型应用全景
  • 【micro:bit】从入门到放弃(六):示例蜂鸣器音乐、摇色子、光照强度、串口调试、麦克风
  • mac版SVN客户端
  • “Datawhale AI夏令营”「结构化数据的用户意图理解和知识问答挑战赛」1
  • 最优估计准则与方法(5)加权最小二乘估计(WLS)_学习笔记
  • 【图像分割】记录1:unet, yolov8_seg
  • 基于springboot的在线数码商城/在线电子产品商品销售系统的设计与实现
  • 如何解决pip安装报错ModuleNotFoundError: No module named ‘ipython’问题