当前位置: 首页 > ops >正文

动态规划应用场景 + 代表题目清单(模板加上套路加上题单)

1. 序列型DP(Sequence DP)

✅ 应用场景
  • 单个或多个序列(数组/字符串),求最优子结构。

  • 常见问题:最长递增子序列、最长公共子序列、回文子序列。

🧠 套路总结
  • 单序列:dp[i] = max(dp[j]) + 1 (j < i 且 nums[j] < nums[i])

  • 双序列:dp[i][j] = max(dp[i-1][j], dp[i][j-1], dp[i-1][j-1]+1) 依赖匹配关系

🧪 代表题目
1.1 最长递增/最长递减子序列
  • 题目举例

    • LeetCode 300. Longest Increasing Subsequence

    • LeetCode 674. Longest Continuous Increasing Subsequence

    • LeetCode 646. Maximum Length of Pair Chain

    • LeetCode 376. Wiggle Subsequence

1.2 最长公共子序列/子串
  • 题目举例

    • LeetCode 1143. Longest Common Subsequence

    • LeetCode 1092. Shortest Common Supersequence

    • LeetCode 718. Maximum Length of Repeated Subarray

1.3 回文子序列/子串
  • 题目举例

    • LeetCode 516. Longest Palindromic Subsequence

    • LeetCode 5. Longest Palindromic Substring

    • LeetCode 647. Palindromic Substrings

1.4 编辑距离和相似度
  • 题目举例

    • LeetCode 72. Edit Distance

    • LeetCode 583. Delete Operation for Two Strings

🧩 Go 模板
for i := 1; i < n; i++ {for j := 0; j < i; j++ {if condition {dp[i] = max(dp[i], dp[j] + val)}}
}

2. 背包型DP(Knapsack DP)

✅ 应用场景
  • 有物品、价值、容量的选择问题。

  • 子类型:0/1背包、完全背包、多重背包。

🧠 套路总结
// 0/1 背包(从大到小)
for i := 0; i < n; i++ {for j := cap; j >= weight[i]; j-- {dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}
}// 完全背包(从小到大)
for i := 0; i < n; i++ {for j := weight[i]; j <= cap; j++ {dp[j] = max(dp[j], dp[j-weight[i]]+value[i])}
}
🧪 代表题目
2.1 0/1背包问题
  • 题目举例

    • LeetCode 416. Partition Equal Subset Sum

    • LeetCode 1049. Last Stone Weight II

    • LeetCode 474. Ones and Zeroes

2.2 完全背包问题
  • 题目举例

    • LeetCode 518. Coin Change II

    • LeetCode 322. Coin Change

    • LeetCode 139. Word Break

2.3 多重背包、分组背包等变形
  • 题目举例

    • LeetCode 698. Partition to K Equal Sum Subsets

    • LeetCode 474. Ones and Zeroes (也包含组背包思想)


3. 区间型DP(Interval DP)

✅ 应用场景
  • 合并区间、回文判断,求最优合并方案。

  • 状态:dp[i][j]表示区间[i,j]的最优值。

🧠 套路总结
for length := 2; length <= n; length++ {for i := 0; i <= n-length; i++ {j := i + length - 1for k := i; k < j; k++ {dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j]+cost[i][j])}}
}
🧪 代表题目
3.1 合并区间与括号相关
  • 题目举例

    • LeetCode 312. Burst Balloons

    • LeetCode 1000. Minimum Cost to Merge Stones

    • LeetCode 544. Output Contest Matches

3.2 回文串判定与划分
  • 题目举例

    • LeetCode 5. Longest Palindromic Substring

    • LeetCode 132. Palindrome Partitioning II

    • LeetCode 131. Palindrome Partitioning


4. 状态压缩DP(Bitmask DP)

✅ 应用场景
  • 元素子集、排列组合、旅行商问题等。

  • 状态数 ≈ 2^n(n ≤ 20)

🧠 套路总结
for mask := 0; mask < (1<<n); mask++ {for i := 0; i < n; i++ {if (mask&(1<<i)) == 0 {newMask := mask | (1 << i)dp[newMask] = min(dp[newMask], dp[mask]+cost[prev][i])}}
}
🧪 代表题目
4.1 旅行商(TSP)
  • 题目举例

    • LeetCode 847. Shortest Path Visiting All Nodes

    • LeetCode 1129. Shortest Path with Alternating Colors

4.2 子集划分和集合覆盖
  • 题目举例

    • LeetCode 698. Partition to K Equal Sum Subsets

    • LeetCode 1269. Number of Ways to Stay in the Same Place After Some Steps


5. 树形DP(Tree DP)

✅ 应用场景
  • 状态在树上自底向上传递,依赖子树结构。

🧠 套路总结
func dfs(node *TreeNode) (rob, notRob int) {if node == nil {return 0, 0}leftRob, leftNot := dfs(node.Left)rightRob, rightNot := dfs(node.Right)rob = node.Val + leftNot + rightNotnotRob = max(leftRob, leftNot) + max(rightRob, rightNot)return
}
🧪 代表题目
  • 5.1 树上选点问题
  • 题目举例

    • LeetCode 337. House Robber III

    • LeetCode 87. Scramble String (也用树形DP思想)

  • 题目举例

    • LeetCode 124. Binary Tree Maximum Path Sum

    • LeetCode 968. Binary Tree Cameras

  • 5.2 树上路径问题

6. 计数型DP(Counting DP)

✅ 应用场景
  • 统计路径、方案数、组合数。

🧠 套路总结
for i := 0; i < m; i++ {for j := 0; j < n; j++ {if i > 0 {dp[i][j] += dp[i-1][j]}if j > 0 {dp[i][j] += dp[i][j-1]}}
}
🧪 代表题目
  • 6.1 路径计数
  • 题目举例

    • LeetCode 62. Unique Paths

    • LeetCode 63. Unique Paths II

  • 6.2 组合计数
  • 题目举例

    • LeetCode 70. Climbing Stairs

    • LeetCode 639. Decode Ways II

  • 题目举例

    • LeetCode 377. Combination Sum IV

  • 6.3 排列计数
    • LeetCode 377. Combination Sum IV

7. 概率型DP(Probability DP)

✅ 应用场景
  • 求概率、期望值。

🧠 套路总结
for k := 1; k <= K; k++ {for i := 0; i < N; i++ {for j := 0; j < N; j++ {for _, dir := range dirs {ni, nj := i+dir[0], j+dir[1]if inBounds(ni, nj) {dp[k][i][j] += dp[k-1][ni][nj] / 8.0}}}}
}
🧪 代表题目
7.1 马尔可夫过程概率计算
  • 题目举例

    • LeetCode 688. Knight Probability in Chessboard

    • LeetCode 837. New 21 Game

7.2 期望值计算
  • 题目举例

    • LeetCode 470. Implement Rand10() Using Rand7()

✅ 8. 子串 / 子序列问题

多用于字符串匹配、编辑距离等

🔹 场景:

  • 最长公共子序列、子串

  • 编辑距离

  • 回文子序列

🔸 代表题目:

题号名称
1143Longest Common Subsequence
72Edit Distance
5Longest Palindromic Substring

📌 模板结构:

if s[i] == t[j] {dp[i][j] = dp[i-1][j-1] + 1
} else {dp[i][j] = max(dp[i-1][j], dp[i][j-1])
}

http://www.xdnf.cn/news/8283.html

相关文章:

  • 手机IP地址更换的影响与操作指南
  • Leetcode 2792. 计算足够大的节点数
  • 储能电站:风光储一体化能源中心数字孪生
  • Vmware ubuntu22.04 虚拟机 连接Windows主机虚拟串口
  • 【Unity3D】Text组件中换行文本显示异常
  • 频湖脉决全文
  • spring.factories详解
  • ROS合集(七)SVIn2声呐模块分析
  • JVM 双亲委派模型
  • C++单例模式详解
  • 前端(小程序)学习笔记(CLASS 2):WXML模板语法与WXSS模板样式
  • 光电耦合器与数字容隔离器的“光速对话”
  • Java设计模式:探索编程背后的哲学
  • python定时删除指定索引
  • 谷歌浏览器调试python pygui程序
  • 国产化Word处理控件Spire.Doc教程:使用 Python 创建 Word 文档的详细指南
  • 企业级云原生爬虫架构与智能优化
  • LET 2025盛大开幕!数智工厂×智慧物流×机器人,一展get创新科技
  • VSCode 插件 GitLens 破解方法
  • 线程池介绍,分类,实现(工作原理,核心组成,拒绝策略),固态线程池的实现+详细解释(支持超时取消机制和不同的拒绝策略)
  • [性能优化] 数据库连接池(Connection Pooling)原理及其在Java/Python应用中的配置
  • 大模型高效微调方法综述:P-Tuning软提示与lora低秩微调附案例代码详解
  • 在 ABP VNext 中集成 OpenCvSharp:构建高可用图像灰度、压缩与格式转换服务
  • 自制操作系统day10叠加处理
  • 数据库系统概论(九)SQL连接查询语言超详细讲解(附带例题,表格详细讲解对比带你一步步掌握)
  • MCP 服务与 Agent 协同架构的理论基石:从分布式智能到生态化协作
  • OSI 深度安全防御体系架构深度剖析
  • Java转Go日记(五十六):gin 渲染
  • 可视化大屏实现全屏或非全屏
  • iOS使用Metal对采集视频进行渲染