当前位置: 首页 > ops >正文

Spark实现推荐系统中的相似度算法

在推荐系统中,协同过滤算法是应用较多的,具体又主要划分为基于用户和基于物品的协同过滤算法,核心点就是基于"一个人"或"一件物品",根据这个人或物品所具有的属性,比如对于人就是性别、年龄、工作、收入、喜好等,找出与这个人或物品相似的人或物,当然实际处理中参考的因子会复杂的多。

本篇文章不介绍相关数学概念,主要给出常用的相似度算法代码实现,并且同一算法有多种实现方式。

欧几里得距离

def euclidean2(v1: Vector, v2: Vector): Double = {require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +s"=${v2.size}.")val x = v1.toArrayval y = v2.toArrayeuclidean(x, y)}def euclidean(x: Array[Double], y: Array[Double]): Double = {require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +s"=${y.length}.")math.sqrt(x.zip(y).map(p => p._1 - p._2).map(d => d * d).sum)}def euclidean(v1: Vector, v2: Vector): Double = {val sqdist = Vectors.sqdist(v1, v2)math.sqrt(sqdist)}

皮尔逊相关系数

 def pearsonCorrelationSimilarity(arr1: Array[Double], arr2: Array[Double]): Double = {require(arr1.length == arr2.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${arr1.length} and Len(y)" +s"=${arr2.length}.")val sum_vec1 = arr1.sumval sum_vec2 = arr2.sumval square_sum_vec1 = arr1.map(x => x * x).sumval square_sum_vec2 = arr2.map(x => x * x).sumval zipVec = arr1.zip(arr2)val product = zipVec.map(x => x._1 * x._2).sumval numerator = product - (sum_vec1 * sum_vec2 / arr1.length)val dominator = math.pow((square_sum_vec1 - math.pow(sum_vec1, 2) / arr1.length) * (square_sum_vec2 - math.pow(sum_vec2, 2) / arr2.length), 0.5)if (dominator == 0) Double.NaN else numerator / (dominator * 1.0)}

余弦相似度

 /** jblas实现余弦相似度 */def cosineSimilarity(v1: DoubleMatrix, v2: DoubleMatrix): Double = {require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(v1)=${x.length} and Len(v2)" +s"=${y.length}.")v1.dot(v2) / (v1.norm2() * v2.norm2())}def cosineSimilarity(v1: Vector, v2: Vector): Double = {require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +s"=${v2.size}.")val x = v1.toArrayval y = v2.toArraycosineSimilarity(x, y)}def cosineSimilarity(x: Array[Double], y: Array[Double]): Double = {require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +s"=${y.length}.")val member = x.zip(y).map(d => d._1 * d._2).sumval temp1 = math.sqrt(x.map(math.pow(_, 2)).sum)val temp2 = math.sqrt(y.map(math.pow(_, 2)).sum)val denominator = temp1 * temp2if (denominator == 0) Double.NaN else member / (denominator * 1.0)}

修正余弦相似度

def adjustedCosineSimJblas(x: DoubleMatrix, y: DoubleMatrix): Double = {require(x.length == y.length, s"SimilarityAlgorithms:DoubleMatrix length do not match: Len(x)=${x.length} and Len(y)" +s"=${y.length}.")val avg = (x.sum() + y.sum()) / (x.length + y.length)val v1 = x.sub(avg)val v2 = y.sub(avg)v1.dot(v2) / (v1.norm2() * v2.norm2())}def adjustedCosineSimJblas(x: Array[Double], y: Array[Double]): Double = {require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +s"=${y.length}.")val v1 = new DoubleMatrix(x)val v2 = new DoubleMatrix(y)adjustedCosineSimJblas(v1, v2)}def adjustedCosineSimilarity(v1: Vector, v2: Vector): Double = {require(v1.size == v2.size, s"SimilarityAlgorithms:Vector dimensions do not match: Dim(v1)=${v1.size} and Dim(v2)" +s"=${v2.size}.")val x = v1.toArrayval y = v2.toArrayadjustedCosineSimilarity(x, y)}def adjustedCosineSimilarity(x: Array[Double], y: Array[Double]): Double = {require(x.length == y.length, s"SimilarityAlgorithms:Array length do not match: Len(x)=${x.length} and Len(y)" +s"=${y.length}.")val avg = (x.sum + y.sum) / (x.length + y.length)val member = x.map(_ - avg).zip(y.map(_ - avg)).map(d => d._1 * d._2).sumval temp1 = math.sqrt(x.map(num => math.pow(num - avg, 2)).sum)val temp2 = math.sqrt(y.map(num => math.pow(num - avg, 2)).sum)val denominator = temp1 * temp2if (denominator == 0) Double.NaN else member / (denominator * 1.0)}

大家如果在实际业务处理中有相关需求,可以根据实际场景对上述代码进行优化或改造,当然很多算法框架提供的一些算法是对这些相似度算法的封装,底层还是依赖于这一套,也能帮助大家做更好的了解。比如Spark MLlib在KMeans算法实现中,底层对欧几里得距离的计算实现。

更多干货抢先看:数据仓库建模工具大盘点 - 从建模工具介绍、选型建议到行业应用案例

http://www.xdnf.cn/news/19468.html

相关文章:

  • Proteus 仿真 + STM32CubeMX 协同开发全教程:从配置到仿真一步到位
  • 盟接之桥说制造:守正出奇:在能力圈内稳健前行,以需求导向赢得市场
  • 基于51单片机220V交流电流检测系统过流阈值报警设计
  • 增强现实—Gated-attention architectures for task-oriented language grounding
  • 从零开始的python学习(九)P134+P135+P136+P137+P138+P139+P140
  • 【LeetCode热题100道笔记+动画】颜色分类
  • 【面试场景题】如何快速判断几十亿个数中是否存在某个数
  • python-pptx 库(最常用,适合生成/修改 PPT 文件)
  • 深入解析quiche开源项目:从QUIC协议到云原生实践
  • 大模型微调与LoRA/QLoRA方法解析
  • 四、练习1:Git基础操作
  • Python爬虫实战:研究Colormap,构建优质色彩方案数据采集和分析系统
  • 学习:uniapp全栈微信小程序vue3后台-暂时停更
  • C# Task 入门:让你的程序告别卡顿
  • 一文读懂k8s的pv与pvc原理
  • 【Proteus仿真】8*8LED点阵控制系列仿真——循环显示数字/按键控制显示图案
  • 【Netty4核心原理⑭】【Netty 内存分配 ByteBuf❷】
  • 计算机组成原理1 组成与各部件流程 9.1
  • 国内服务器如何安装docker或者是1panel
  • 鸿蒙总改变字体大小设置
  • 计算机网络---https(超文本传输安全协议)
  • Kafka面试精讲 Day 4:Consumer消费者模型与消费组
  • SQLSERVER关键字
  • npm 打包上传命令,撤销错误版本
  • 智能核心:机器人芯片的科技革新与未来挑战
  • 开源npm引导guide组件
  • GIT(了解)
  • 音视频开发入门:FFmpeg vs GStreamer,新手该如何选择?
  • 前端数据可视化:基于Vue3封装 ECharts 的最佳实践
  • Prometheus Alertmanager 告警组件学习