当前位置: 首页 > ops >正文

数学积分方程显式求解

题目

问题 10. 显式求解以下方程中的 u(x) u(x) u(x)(即答案不能保留积分形式!)。

(a) e−x22=12∫−∞∞e−∣x−y∣u(y)dy e^{-\frac{x^2}{2}} = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} u(y) dy e2x2=21exyu(y)dy

(b) e−x2=∫0∞f(x−y)e−ydy e^{-x^2} = \int_0^{\infty} f(x-y) e^{-y} dy ex2=0f(xy)eydy(注:原题中为 f(x−y) f(x-y) f(xy),但根据上下文及求解 u(x) u(x) u(x) 的要求,应为 u(x−y) u(x-y) u(xy) 的笔误。)

© e−x24=∫−∞0u(x−y)e12ydy e^{-\frac{x^2}{4}} = \int_{-\infty}^0 u(x-y) e^{\frac{1}{2} y} dy e4x2=0u(xy)e21ydy

(d) e−x22=16π∫−∞∞e−2(x−y)2u(y)dy e^{-\frac{x^2}{2}} = \frac{1}{\sqrt{6\pi}} \int_{-\infty}^{\infty} e^{-2(x-y)^2} u(y) dy e2x2=6π1e2(xy)2u(y)dy

(e) 14+x2=∫−∞∞u(x−y)y2+1dy \frac{1}{4+x^2} = \int_{-\infty}^{\infty} \frac{u(x-y)}{y^2+1} dy 4+x21=y2+1u(xy)dy

(f) e−∣x∣=∫1∞e−yu(x−y)dy e^{-|x|} = \int_1^{\infty} e^{-y} u(x-y) dy ex=1eyu(xy)dy

(g) e−∣x∣=∫x∞e−2(y−x)u(y)dy e^{-|x|} = \int_x^{\infty} e^{-2(y-x)} u(y) dy ex=xe2(yx)u(y)dy

(h) xe−∣x∣=∫−∞∞e−∣x−y∣u(y)dy x e^{-|x|} = \int_{-\infty}^{\infty} e^{-|x-y|} u(y) dy xex=exyu(y)dy

解答

以下针对每个部分显式求解 u(x) u(x) u(x)。求解过程基于积分方程的性质、傅里叶变换、变量替换和微分技巧。最终答案已验证符合原方程。

(a) e−x22=12∫−∞∞e−∣x−y∣u(y)dy e^{-\frac{x^2}{2}} = \frac{1}{2} \int_{-\infty}^{\infty} e^{-|x-y|} u(y) dy e2x2=21exyu(y)dy

  • 求解
    方程右边是卷积形式。应用傅里叶变换:
    • 左边: F{e−x2/2}=2πe−k2/2 \mathcal{F}\{ e^{-x^2 / 2} \} = \sqrt{2\pi} e^{-k^2 / 2} F{ex2/2}=2πek2/2
    • 右边: F{12e−∣⋅∣∗u}=12⋅21+k2u^(k)=11+k2u^(k) \mathcal{F}\{ \frac{1}{2} e^{-|\cdot|} * u \} = \frac{1}{2} \cdot \frac{2}{1 + k^2} \hat{u}(k) = \frac{1}{1 + k^2} \hat{u}(k) F{21eu}=211+k22u^(k)=1+k21u^(k)
      等式: 2πe−k2/2=11+k2u^(k) \sqrt{2\pi} e^{-k^2 / 2} = \frac{1}{1 + k^2} \hat{u}(k) 2πek2/2=1+k21u^(k)
      解得: u^(k)=2π(1+k2)e−k2/2 \hat{u}(k) = \sqrt{2\pi} (1 + k^2) e^{-k^2 / 2} u^(k)=2π(1+k2)ek2/2
      反傅里叶变换:
      u(x)=F−1{2π(1+k2)e−k2/2}=(2−x2)e−x2/2 u(x) = \mathcal{F}^{-1} \{ \sqrt{2\pi} (1 + k^2) e^{-k^2 / 2} \} = (2 - x^2) e^{-x^2 / 2} u(x)=F1{2π(1+k2)ek2/2}=(2x2)ex2/2
  • 答案u(x)=(2−x2)e−x22 u(x) = (2 - x^2) e^{-\frac{x^2}{2}} u(x)=(2x2)e2x2

(b) e−x2=∫0∞u(x−y)e−ydy e^{-x^2} = \int_0^{\infty} u(x-y) e^{-y} dy ex2=0u(xy)eydy(修正 f f fu u u

  • 求解
    z=x−y z = x - y z=xy,则积分变为:
    e−x2=∫−∞xu(z)e−(x−z)dz=e−x∫−∞xu(z)ezdz e^{-x^2} = \int_{-\infty}^x u(z) e^{-(x - z)} dz = e^{-x} \int_{-\infty}^x u(z) e^{z} dz ex2=xu(z)e(xz)dz=exxu(z)ezdz
    v(x)=∫−∞xu(z)ezdz v(x) = \int_{-\infty}^x u(z) e^{z} dz v(x)=xu(z)ezdz,则 e−x2=e−xv(x) e^{-x^2} = e^{-x} v(x) ex2=exv(x),即 v(x)=ex−x2 v(x) = e^{x - x^2} v(x)=exx2
    求导: v′(x)=u(x)ex=ddx(ex−x2)=ex−x2(1−2x) v'(x) = u(x) e^{x} = \frac{d}{dx} (e^{x - x^2}) = e^{x - x^2} (1 - 2x) v(x)=u(x)ex=dxd(exx2)=exx2(12x)
    解得: u(x)=(1−2x)e−x2 u(x) = (1 - 2x) e^{-x^2} u(x)=(12x)ex2
  • 答案u(x)=(1−2x)e−x2 u(x) = (1 - 2x) e^{-x^2} u(x)=(12x)ex2

© e−x24=∫−∞0u(x−y)e12ydy e^{-\frac{x^2}{4}} = \int_{-\infty}^0 u(x-y) e^{\frac{1}{2} y} dy e4x2=0u(xy)e21ydy

  • 求解
    z=x−y z = x - y z=xy,则积分变为:
    e−x2/4=∫x∞u(z)e12(x−z)dz=e12x∫x∞u(z)e−12zdz e^{-x^2 / 4} = \int_x^{\infty} u(z) e^{\frac{1}{2} (x - z)} dz = e^{\frac{1}{2} x} \int_x^{\infty} u(z) e^{-\frac{1}{2} z} dz ex2/4=xu(z)e21(xz)dz=e21xxu(z)e21zdz
    w(x)=∫x∞u(z)e−12zdz w(x) = \int_x^{\infty} u(z) e^{-\frac{1}{2} z} dz w(x)=xu(z)e21zdz,则 e−x2/4=e12xw(x) e^{-x^2 / 4} = e^{\frac{1}{2} x} w(x) ex2/4=e21xw(x),即 w(x)=e−x24−x2 w(x) = e^{-\frac{x^2}{4} - \frac{x}{2}} w(x)=e4x22x
    求导: w′(x)=−u(x)e−12x=ddx(e−x24−x2)=−12(x+1)e−x24−x2 w'(x) = -u(x) e^{-\frac{1}{2} x} = \frac{d}{dx} \left( e^{-\frac{x^2}{4} - \frac{x}{2}} \right) = -\frac{1}{2} (x + 1) e^{-\frac{x^2}{4} - \frac{x}{2}} w(x)=u(x)e21x=dxd(e4x22x)=21(x+1)e4x22x
    解得: u(x)e−12x=12(x+1)e−x24e−x2 u(x) e^{-\frac{1}{2} x} = \frac{1}{2} (x + 1) e^{-\frac{x^2}{4}} e^{-\frac{x}{2}} u(x)e21x=21(x+1)e4x2e2x,即 u(x)=12(x+1)e−x24 u(x) = \frac{1}{2} (x + 1) e^{-\frac{x^2}{4}} u(x)=21(x+1)e4x2
  • 答案u(x)=12(x+1)e−x24 u(x) = \frac{1}{2} (x + 1) e^{-\frac{x^2}{4}} u(x)=21(x+1)e4x2

(d) e−x22=16π∫−∞∞e−2(x−y)2u(y)dy e^{-\frac{x^2}{2}} = \frac{1}{\sqrt{6\pi}} \int_{-\infty}^{\infty} e^{-2(x-y)^2} u(y) dy e2x2=6π1e2(xy)2u(y)dy

  • 求解
    方程右边是高斯卷积。应用傅里叶变换:
    • 左边: F{e−x2/2}=2πe−k2/2 \mathcal{F}\{ e^{-x^2 / 2} \} = \sqrt{2\pi} e^{-k^2 / 2} F{ex2/2}=2πek2/2
    • 右边: F{16πe−2⋅2∗u}=16π⋅π2e−k2/8u^(k)=123e−k2/8u^(k) \mathcal{F}\{ \frac{1}{\sqrt{6\pi}} e^{-2 \cdot^2} * u \} = \frac{1}{\sqrt{6\pi}} \cdot \sqrt{\frac{\pi}{2}} e^{-k^2 / 8} \hat{u}(k) = \frac{1}{2\sqrt{3}} e^{-k^2 / 8} \hat{u}(k) F{6π1e22u}=6π12πek2/8u^(k)=231ek2/8u^(k)
      等式: 2πe−k2/2=123e−k2/8u^(k) \sqrt{2\pi} e^{-k^2 / 2} = \frac{1}{2\sqrt{3}} e^{-k^2 / 8} \hat{u}(k) 2πek2/2=231ek2/8u^(k)
      解得: u^(k)=26πe−3k2/8 \hat{u}(k) = 2 \sqrt{6\pi} e^{-3k^2 / 8} u^(k)=26πe3k2/8
      反傅里叶变换:
      u(x)=F−1{26πe−3k2/8}=4e−23x2 u(x) = \mathcal{F}^{-1} \{ 2 \sqrt{6\pi} e^{-3k^2 / 8} \} = 4 e^{-\frac{2}{3} x^2} u(x)=F1{26πe3k2/8}=4e32x2
  • 答案u(x)=4e−23x2 u(x) = 4 e^{-\frac{2}{3} x^2} u(x)=4e32x2

(e) 14+x2=∫−∞∞u(x−y)y2+1dy \frac{1}{4+x^2} = \int_{-\infty}^{\infty} \frac{u(x-y)}{y^2+1} dy 4+x21=y2+1u(xy)dy

  • 求解
    方程是卷积形式。应用傅里叶变换:
    • 左边: F{14+x2}=π2e−2∣k∣ \mathcal{F}\{ \frac{1}{4 + x^2} \} = \frac{\pi}{2} e^{-2 |k|} F{4+x21}=2πe2k(因为 a=2 a = 2 a=2)
    • 右边: F{u∗1y2+1}=u^(k)⋅πe−∣k∣ \mathcal{F}\{ u * \frac{1}{y^2 + 1} \} = \hat{u}(k) \cdot \pi e^{-|k|} F{uy2+11}=u^(k)πek(因为 a=1 a = 1 a=1)
      等式: π2e−2∣k∣=πe−∣k∣u^(k) \frac{\pi}{2} e^{-2 |k|} = \pi e^{-|k|} \hat{u}(k) 2πe2k=πeku^(k)
      解得: u^(k)=12e−∣k∣ \hat{u}(k) = \frac{1}{2} e^{-|k|} u^(k)=21ek
      反傅里叶变换:
      u(x)=F−1{12e−∣k∣}=12π(1+x2) u(x) = \mathcal{F}^{-1} \{ \frac{1}{2} e^{-|k|} \} = \frac{1}{2\pi (1 + x^2)} u(x)=F1{21ek}=2π(1+x2)1
  • 答案u(x)=12π(1+x2) u(x) = \frac{1}{2\pi (1 + x^2)} u(x)=2π(1+x2)1

(f) e−∣x∣=∫1∞e−yu(x−y)dy e^{-|x|} = \int_1^{\infty} e^{-y} u(x-y) dy ex=1eyu(xy)dy

  • 求解
    z=x−y z = x - y z=xy,则积分变为:
    e−∣x∣=∫−∞x−1u(z)e−(x−z)dz=e−x∫−∞x−1u(z)ezdz e^{-|x|} = \int_{-\infty}^{x-1} u(z) e^{-(x - z)} dz = e^{-x} \int_{-\infty}^{x-1} u(z) e^{z} dz ex=x1u(z)e(xz)dz=exx1u(z)ezdz
    v(x)=∫−∞x−1u(z)ezdz v(x) = \int_{-\infty}^{x-1} u(z) e^{z} dz v(x)=x1u(z)ezdz,则 e−∣x∣ex=v(x) e^{-|x|} e^{x} = v(x) exex=v(x)
    分析:
    • x≥0 x \geq 0 x0,则 v(x)=1 v(x) = 1 v(x)=1
    • x<0 x < 0 x<0,则 v(x)=e2x v(x) = e^{2x} v(x)=e2x
      求导: v′(x)=u(x−1)ex−1 v'(x) = u(x-1) e^{x-1} v(x)=u(x1)ex1
    • x≥0 x \geq 0 x0v′(x)=0  ⟹  u(x−1)=0 v'(x) = 0 \implies u(x-1) = 0 v(x)=0u(x1)=0
    • x<0 x < 0 x<0v′(x)=2e2x  ⟹  u(x−1)ex−1=2e2x  ⟹  u(x−1)=2ex+1 v'(x) = 2 e^{2x} \implies u(x-1) e^{x-1} = 2 e^{2x} \implies u(x-1) = 2 e^{x+1} v(x)=2e2xu(x1)ex1=2e2xu(x1)=2ex+1
      t=x−1 t = x - 1 t=x1
    • t≥−1 t \geq -1 t1(即 x≥0 x \geq 0 x0),则 u(t)=0 u(t) = 0 u(t)=0
    • t<−1 t < -1 t<1(即 x<0 x < 0 x<0),则 u(t)=2e(t+1)+1=2et+2 u(t) = 2 e^{(t + 1) + 1} = 2 e^{t + 2} u(t)=2e(t+1)+1=2et+2
      u(x)={2ex+2x<−10x≥−1 u(x) = \begin{cases} 2 e^{x + 2} & x < -1 \\ 0 & x \geq -1 \end{cases} u(x)={2ex+20x<1x1
  • 答案u(x)={2ex+2if x<−10if x≥−1 u(x) = \begin{cases} 2 e^{x + 2} & \text{if } x < -1 \\ 0 & \text{if } x \geq -1 \end{cases} u(x)={2ex+20if x<1if x1

(g) e−∣x∣=∫x∞e−2(y−x)u(y)dy e^{-|x|} = \int_x^{\infty} e^{-2(y-x)} u(y) dy ex=xe2(yx)u(y)dy

  • 求解
    方程写为: e−∣x∣=e2x∫x∞e−2yu(y)dy e^{-|x|} = e^{2x} \int_x^{\infty} e^{-2y} u(y) dy ex=e2xxe2yu(y)dy,即 ∫x∞e−2yu(y)dy=e−∣x∣−2x \int_x^{\infty} e^{-2y} u(y) dy = e^{-|x| - 2x} xe2yu(y)dy=ex2x
    w(x)=∫x∞e−2yu(y)dy w(x) = \int_x^{\infty} e^{-2y} u(y) dy w(x)=xe2yu(y)dy,则:
    • x≥0 x \geq 0 x0,则 w(x)=e−3x w(x) = e^{-3x} w(x)=e3x
    • x<0 x < 0 x<0,则 w(x)=e−x w(x) = e^{-x} w(x)=ex
      求导: w′(x)=−e−2xu(x) w'(x) = -e^{-2x} u(x) w(x)=e2xu(x)
    • x>0 x > 0 x>0w′(x)=−3e−3x  ⟹  −e−2xu(x)=−3e−3x  ⟹  u(x)=3e−x w'(x) = -3 e^{-3x} \implies -e^{-2x} u(x) = -3 e^{-3x} \implies u(x) = 3 e^{-x} w(x)=3e3xe2xu(x)=3e3xu(x)=3ex
    • x<0 x < 0 x<0w′(x)=−e−x  ⟹  −e−2xu(x)=−e−x  ⟹  u(x)=ex w'(x) = -e^{-x} \implies -e^{-2x} u(x) = -e^{-x} \implies u(x) = e^{x} w(x)=exe2xu(x)=exu(x)=ex
      x=0 x = 0 x=0 处未定义,但极限存在。
  • 答案u(x)={exif x<03e−xif x>0 u(x) = \begin{cases} e^{x} & \text{if } x < 0 \\ 3 e^{-x} & \text{if } x > 0 \end{cases} u(x)={ex3exif x<0if x>0(在 x=0 x = 0 x=0 处不定义)

(h) xe−∣x∣=∫−∞∞e−∣x−y∣u(y)dy x e^{-|x|} = \int_{-\infty}^{\infty} e^{-|x-y|} u(y) dy xex=exyu(y)dy

  • 求解
    方程是卷积形式。应用傅里叶变换:
    • 左边: F{xe−∣x∣}=−4ik(1+k2)2 \mathcal{F}\{ x e^{-|x|} \} = -\frac{4i k}{(1 + k^2)^2} F{xex}=(1+k2)24ik(奇函数)
    • 右边: F{e−∣⋅∣∗u}=21+k2u^(k) \mathcal{F}\{ e^{-|\cdot|} * u \} = \frac{2}{1 + k^2} \hat{u}(k) F{eu}=1+k22u^(k)
      等式: −4ik(1+k2)2=21+k2u^(k) -\frac{4i k}{(1 + k^2)^2} = \frac{2}{1 + k^2} \hat{u}(k) (1+k2)24ik=1+k22u^(k)
      解得: u^(k)=−2ik1+k2 \hat{u}(k) = -2i \frac{k}{1 + k^2} u^(k)=2i1+k2k
      反傅里叶变换:
      F−1{−2ik1+k2}=sign(x)e−∣x∣ \mathcal{F}^{-1} \{ -2i \frac{k}{1 + k^2} \} = \text{sign}(x) e^{-|x|} F1{2i1+k2k}=sign(x)ex(因为 F{sign(x)e−∣x∣}=−2ik1+k2 \mathcal{F}\{ \text{sign}(x) e^{-|x|} \} = -2i \frac{k}{1 + k^2} F{sign(x)ex}=2i1+k2k)
  • 答案u(x)=sign(x)e−∣x∣ u(x) = \text{sign}(x) e^{-|x|} u(x)=sign(x)ex(其中 sign(x) \text{sign}(x) sign(x) 是符号函数)

答案汇总

(a) u(x)=(2−x2)e−x22 u(x) = (2 - x^2) e^{-\frac{x^2}{2}} u(x)=(2x2)e2x2
(b) u(x)=(1−2x)e−x2 u(x) = (1 - 2x) e^{-x^2} u(x)=(12x)ex2
© u(x)=12(x+1)e−x24 u(x) = \frac{1}{2} (x + 1) e^{-\frac{x^2}{4}} u(x)=21(x+1)e4x2
(d) u(x)=4e−23x2 u(x) = 4 e^{-\frac{2}{3} x^2} u(x)=4e32x2
(e) u(x)=12π(1+x2) u(x) = \frac{1}{2\pi (1 + x^2)} u(x)=2π(1+x2)1
(f) u(x)={2ex+2if x<−10if x≥−1 u(x) = \begin{cases} 2 e^{x + 2} & \text{if } x < -1 \\ 0 & \text{if } x \geq -1 \end{cases} u(x)={2ex+20if x<1if x1
(g) u(x)={exif x<03e−xif x>0 u(x) = \begin{cases} e^{x} & \text{if } x < 0 \\ 3 e^{-x} & \text{if } x > 0 \end{cases} u(x)={ex3exif x<0if x>0(在 x=0 x = 0 x=0 处不定义)
(h) u(x)=sign(x)e−∣x∣ u(x) = \text{sign}(x) e^{-|x|} u(x)=sign(x)ex

http://www.xdnf.cn/news/15620.html

相关文章:

  • Android性能优化之电量优化
  • http与https的主要区别是什么?
  • http性能测试命令ab
  • sqli-labs靶场通关笔记:第29-31关 HTTP参数污染
  • 【前端】输入框输入内容时,根据文本长度自动分割,中间用横杠分割
  • 模版匹配的曲线好看与否有影响吗?
  • Git 中如何比较不同版本之间的差异?常用命令有哪些?
  • 金属伪影校正的双域联合深度学习框架复现
  • Prometheus错误率监控与告警实战:如何自定义规则精准预警服务器异常
  • Spring Boot 应用优雅停机与资源清理:深入理解关闭钩子
  • SQLite 数据库字段类型-详细说明,数据类型详细说明。
  • ES v.s Milvus v.s PG
  • kafka 单机部署指南(KRaft 版本)
  • 代码训练营DAY35 第九章 动态规划part03
  • cocosCreator2.4 Android 输入法遮挡
  • 车载监控录像系统:智能安全驾驶的守护者
  • AI编程工具 Cursor 和 Kiro 哪个的Claude更好用!
  • 如何使用Python将HTML格式的文本转换为Markdown格式?
  • Java基础篇
  • Altera Quartus:编译完成后自动生成pof文件
  • 20250718-6-Kubernetes 调度-Pod对象:环境变量,初始容器,静态_笔记
  • VR平台应该具备哪些功能?怎样选择VR平台?
  • 【playwright篇】教程(十六)[macOS+playwright相关问题]
  • 填坑 | React Context原理
  • AndroidX中ComponentActivity与原生 Activity 的区别
  • STM32+w5500+TcpClient学习笔记
  • JAVA中StringBuilder类,StringJoiner类构造函数方法简单介绍
  • [2025CVPR-目标检测方向] CorrBEV:多视图3D物体检测
  • 基于 HT 的 3D 可视化智慧矿山开发实现
  • 短视频矩阵系统哪家好?全面解析与推荐