当前位置: 首页 > ops >正文

基于物品的协同过滤推荐算法实现(Java电商平台)

下面我将为你实现一个基于物品的协同过滤推荐算法,适用于Java电商平台。这个实现包括核心算法、相似度计算和推荐生成。

1. 数据模型 

 首先定义我们需要的数据模型:

public class Item {private String itemId;    // 商品IDprivate String name;      // 商品名称// 其他商品属性...// 构造方法、getter和setter
}public class User {private String userId;    // 用户IDprivate String username; // 用户名// 其他用户属性...// 构造方法、getter和setter
}public class UserBehavior {private String userId;    // 用户IDprivate String itemId;    // 商品IDprivate double preference; // 偏好分数(如评分、购买次数等)private long timestamp;   // 行为时间戳// 构造方法、getter和setter
}

 2. 相似度计算

基于物品的协同过滤核心是计算物品之间的相似度: 

public class ItemSimilarity {/*** 计算物品之间的余弦相似度* @param itemPrefMap 物品-用户偏好矩阵: Map<itemId, Map<userId, preference>>* @return 物品相似度矩阵: Map<itemId, Map<itemId, similarity>>*/public Map<String, Map<String, Double>> calculateCosineSimilarity(Map<String, Map<String, Double>> itemPrefMap) {Map<String, Map<String, Double>> similarityMatrix = new HashMap<>();// 获取所有物品列表List<String> itemIds = new ArrayList<>(itemPrefMap.keySet());// 计算每对物品之间的相似度for (int i = 0; i < itemIds.size(); i++) {String itemId1 = itemIds.get(i);Map<String, Double> userPrefs1 = itemPrefMap.get(itemId1);// 初始化相似度矩阵similarityMatrix.put(itemId1, new HashMap<>());for (int j = i; j < itemIds.size(); j++) {String itemId2 = itemIds.get(j);if (itemId1.equals(itemId2)) {// 相同物品相似度为1similarityMatrix.get(itemId1).put(itemId2, 1.0);continue;}Map<String, Double> userPrefs2 = itemPrefMap.get(itemId2);// 计算两个物品的共同用户Set<String> commonUsers = new HashSet<>(userPrefs1.keySet());commonUsers.retainAll(userPrefs2.keySet());if (commonUsers.isEmpty()) {// 没有共同用户,相似度为0similarityMatrix.get(itemId1).put(itemId2, 0.0);similarityMatrix.get(itemId2).put(itemId1, 0.0);continue;}// 计算余弦相似度的分子和分母double dotProduct = 0.0;double norm1 = 0.0;double norm2 = 0.0;for (String userId : commonUsers) {double pref1 = userPrefs1.get(userId);double pref2 = userPrefs2.get(userId);dotProduct += pref1 * pref2;norm1 += Math.pow(pref1, 2);norm2 += Math.pow(pref2, 2);}// 计算余弦相似度double similarity = dotProduct / (Math.sqrt(norm1) * Math.sqrt(norm2));// 对称矩阵,所以两个方向都存储similarityMatrix.get(itemId1).put(itemId2, similarity);// 确保对称矩阵的另一半也被填充if (!similarityMatrix.containsKey(itemId2)) {similarityMatrix.put(itemId2, new HashMap<>());}similarityMatrix.get(itemId2).put(itemId1, similarity);}}return similarityMatrix;}/*** 计算物品之间的改进余弦相似度(考虑用户平均评分)*/public Map<String, Map<String, Double>> calculateAdjustedCosineSimilarity(Map<String, Map<String, Double>> itemPrefMap,Map<String, Double> userAvgPrefMap) {// 实现类似上面,但在计算时减去用户平均评分// ...return similarityMatrix;}
}

 3. 推荐引擎

基于物品相似度生成推荐: 

public class ItemBasedRecommender {private Map<String, Map<String, Double>> itemSimilarityMatrix;private Map<String, Map<String, Double>> userItemPrefMap; // 用户-物品偏好矩阵public ItemBasedRecommender(Map<String, Map<String, Double>> itemSimilarityMatrix,Map<String, Map<String, Double>> userItemPrefMap) {this.itemSimilarityMatrix = itemSimilarityMatrix;this.userItemPrefMap = userItemPrefMap;}/*** 为用户推荐物品* @param userId 用户ID* @param topN 推荐数量* @return 推荐物品ID列表,按推荐分数降序排列*/public List<String> recommendItems(String userId, int topN) {// 获取用户历史行为物品Map<String, Double> userHistory = userItemPrefMap.getOrDefault(userId, new HashMap<>());// 存储物品的推荐分数Map<String, Double> recommendationScores = new HashMap<>();// 遍历用户历史行为物品for (Map.Entry<String, Double> entry : userHistory.entrySet()) {String historyItemId = entry.getKey();double historyPref = entry.getValue();// 获取与历史物品相似的物品Map<String, Double> similarItems = itemSimilarityMatrix.getOrDefault(historyItemId, new HashMap<>());// 计算推荐分数for (Map.Entry<String, Double> simEntry : similarItems.entrySet()) {String candidateItemId = simEntry.getKey();double similarity = simEntry.getValue();// 排除用户已经有过行为的物品if (!userHistory.containsKey(candidateItemId)) {double score = recommendationScores.getOrDefault(candidateItemId, 0.0);score += similarity * historyPref;recommendationScores.put(candidateItemId, score);}}}// 按推荐分数排序并返回topNreturn recommendationScores.entrySet().stream().sorted(Map.Entry.<String, Double>comparingByValue().reversed()).limit(topN).map(Map.Entry::getKey).collect(Collectors.toList());}
}

 4. 数据预处理

 在实际应用中,我们需要将原始用户行为数据转换为算法需要的格式:

public class DataPreprocessor {/*** 将用户行为列表转换为物品-用户偏好矩阵*/public Map<String, Map<String, Double>> convertToItemUserMatrix(List<UserBehavior> behaviors) {Map<String, Map<String, Double>> itemUserMatrix = new HashMap<>();for (UserBehavior behavior : behaviors) {String itemId = behavior.getItemId();String userId = behavior.getUserId();double preference = behavior.getPreference();itemUserMatrix.putIfAbsent(itemId, new HashMap<>());itemUserMatrix.get(itemId).put(userId, preference);}return itemUserMatrix;}/*** 将用户行为列表转换为用户-物品偏好矩阵*/public Map<String, Map<String, Double>> convertToUserItemMatrix(List<UserBehavior> behaviors) {Map<String, Map<String, Double>> userItemMatrix = new HashMap<>();for (UserBehavior behavior : behaviors) {String userId = behavior.getUserId();String itemId = behavior.getItemId();double preference = behavior.getPreference();userItemMatrix.putIfAbsent(userId, new HashMap<>());userItemMatrix.get(userId).put(itemId, preference);}return userItemMatrix;}/*** 计算每个用户的平均评分*/public Map<String, Double> calculateUserAveragePreference(List<UserBehavior> behaviors) {Map<String, Double> sumMap = new HashMap<>();Map<String, Integer> countMap = new HashMap<>();for (UserBehavior behavior : behaviors) {String userId = behavior.getUserId();double preference = behavior.getPreference();sumMap.put(userId, sumMap.getOrDefault(userId, 0.0) + preference);countMap.put(userId, countMap.getOrDefault(userId, 0) + 1);}Map<String, Double> avgMap = new HashMap<>();for (String userId : sumMap.keySet()) {avgMap.put(userId, sumMap.get(userId) / countMap.get(userId));}return avgMap;}
}

 5. 完整使用示例

public class RecommendationDemo {public static void main(String[] args) {// 1. 模拟数据List<UserBehavior> behaviors = new ArrayList<>();behaviors.add(new UserBehavior("u1", "i1", 5.0, System.currentTimeMillis()));behaviors.add(new UserBehavior("u1", "i2", 3.0, System.currentTimeMillis()));behaviors.add(new UserBehavior("u1", "i3", 4.0, System.currentTimeMillis()));behaviors.add(new UserBehavior("u2", "i1", 4.0, System.currentTimeMillis()));behaviors.add(new UserBehavior("u2", "i3", 3.0, System.currentTimeMillis()));behaviors.add(new UserBehavior("u2", "i4", 4.5, System.currentTimeMillis()));behaviors.add(new UserBehavior("u3", "i2", 2.5, System.currentTimeMillis()));behaviors.add(new UserBehavior("u3", "i4", 4.0, System.currentTimeMillis()));behaviors.add(new UserBehavior("u3", "i5", 3.5, System.currentTimeMillis()));// 2. 数据预处理DataPreprocessor preprocessor = new DataPreprocessor();Map<String, Map<String, Double>> itemUserMatrix = preprocessor.convertToItemUserMatrix(behaviors);Map<String, Map<String, Double>> userItemMatrix = preprocessor.convertToUserItemMatrix(behaviors);Map<String, Double> userAvgPrefMap = preprocessor.calculateUserAveragePreference(behaviors);// 3. 计算物品相似度ItemSimilarity itemSimilarity = new ItemSimilarity();Map<String, Map<String, Double>> similarityMatrix = itemSimilarity.calculateCosineSimilarity(itemUserMatrix);// 4. 创建推荐引擎ItemBasedRecommender recommender = new ItemBasedRecommender(similarityMatrix, userItemMatrix);// 5. 为用户生成推荐String targetUserId = "u1";List<String> recommendations = recommender.recommendItems(targetUserId, 3);System.out.println("为用户 " + targetUserId + " 推荐的物品:");recommendations.forEach(System.out::println);}
}

 6. 优化考虑

在实际电商平台中,还需要考虑以下优化:

  1. 数据稀疏性问题

    • 使用降维技术(如SVD)

    • 结合内容信息进行混合推荐

  2. 实时性要求

    • 增量更新相似度矩阵

    • 使用滑动窗口只考虑最近的行为

  3. 冷启动问题

    • 对于新商品,使用基于内容的推荐

    • 对于新用户,使用热门推荐或基于人口统计的推荐

  4. 性能优化

    • 使用缓存存储相似度矩阵

    • 分布式计算处理大规模数据

  5. 业务规则结合

    • 考虑商品类别、价格区间等业务规则

    • 排除已售罄或下架商品 

http://www.xdnf.cn/news/13849.html

相关文章:

  • 基于用户的协同过滤推荐算法实现(Java电商平台)
  • 微服务--Gateway网关
  • 开源组件hive页面安全问题
  • 【IEEE/EI/Scopus检索】2025年第六届模式识别与数据挖掘国际会议 (PRDM 2025)
  • Python爬虫进阶:气象数据爬取中的多线程优化与异常处理技巧
  • Java并发进阶系列:深度讨论高并发跳表数据结构ConcurrentSkipListMap的源代码实现(上)
  • python类成员概要
  • 当空间与数据联动,会展中心如何打造智慧运营新范式?
  • 当机床开始“思考”,传统“制造”到“智造”升级路上的法律暗礁
  • 驱动开发前传及led驱动(s5pv210)
  • 深度学习——基于PyTorch的MNIST手写数字识别详解
  • Python数据结构与算法(6.1)——树
  • 使用 Spring Boot 和 dynamic-datasource 实现多数据源集成
  • 从 0 开始理解 Spring 的核心思想 —— IoC 和 DI(1)
  • 深入解析 SNMP Walk 的响应机制
  • 智能疲劳驾驶检测系统算法设计与研究
  • 山东大学软件学院项目实训:基于大模型的模拟面试系统项目总结(八)
  • 微信小程序生成小程序码缓存删除
  • 程序是怎么跑起来的第三章
  • 产品成本分析怎么做?从0到1搭建全生命周期分析框架!
  • 基于 Transformer RoBERTa的情感分类任务实践总结之四——PGM、EMA
  • 操作系统导论 第42章 崩溃一致性:FSCK 和日志
  • TEXT2SQL-vanna多表关联的实验
  • 13.安卓逆向2-frida hook技术-HookJava构造方法
  • 动态规划优雅计算比特位数:从0到n的二进制中1的个数
  • FastJSON等工具序列化特殊字符时会加转义字符\
  • 深度学习-163-MCP技术之使用Cherry Studio调用本地自定义mcp-server
  • 门岗来访访客登记二维码制作,打印机打印粘贴轻松实现。
  • 107.添加附件上传取消附件的功能
  • 06_项目集成 Spring Actuator 并实现可视化页面